Space Shuttle Model AP-101S
Principles of Operation
with Shuttle Instruction Set

g

REV DESCRIPTION . m T e DATE APPROVED
- Release ‘ 0l1-16-85

A Changes from AP-101B & OASCB 07-09-85

B | Update: Add IOP POO as appendix ‘ij* 04-30-86

c Update: Add clarificati??s & EDCP changes 05-01-87

D | Update: add clarif?cﬁtions 02-01-91

E U?date: Add clarifications 05-03-91

F Tipdate: Incorporated C.R. 90669A & 90954C 07-12-94

o - .TITLE =
Spacej?iﬂttle AP-101s Principles of Operation
Document Control Number: 85-C67-001 IBM Federal Secto:z Divaion.“

REVISION A

EDCP

PAGE

DESCRIPTION OF CHANGE

iii thru v

2-1 thru
2-4, 2-11,
2-13 thru
2=-22, 2-24,
2-25, 2-27,
2-29

3‘19 3-2

4-2 thru

4-5, 4-10,
4-11, 4-14,
4=24, 4-25,

4-31 thru

4-33

) 5-2’ 5-<10

8-1 thru

8-9, 8-12
thru 8-22,
8-24, 8-26
thru 8-34

9-1 thru
9-17, 9-19
thfu»9-22
10-2

12-3

13-1, 13-2

15-1 thru
15-34

16=1 thru
16-10

17-1, 17-2
17-3

Single Margin Bars Incorporated To Indicate

Changes To The AP-101B POO.

REVISION

A

EDCP PAGE DESCRIPTION OF CHANGE
2-1, 2-3, The following indicate changes from the
2-10, 2-13, Orbiter Avionics Software Change Board
2-16, 2-20, (OASCB) Baseline meeting held 02/28/85.
2-23, 2-24,
2-29
7-13
8-5, 8_7’
8-11, 8-17,
8-19, 8-29,
8§-31, 8-32,
8-34
9“4, 9"'5,
9-8, 9-15,
9-19, 9-21
10-3
15-10
15-12
15-31
15-33
16-9

REVISION B

EDCP

PAGE

DESCRIPTION OF CHANGE

86-101S-011

86-101S-011

86-101S-011
86-1015-008

86-101S-011

86-1018-011
186-1015-011
86-1015-006

86-101S-011

86-101S5-011

86-1015-011

86-101s=-011
86-1015-011
86-1015-005

86-101S-011

Title

iv

1-1

2-21

2-25

15-1 thru
15-34

15-19

16=1 thru
16-10

17-1 thru
17-4

Add note containing margin bar definition.

Change Appendices A, B, C, to Sections 15, 16,
17, respectively. Add Appendices I, IT, III
(1I0P PO0O).

Change Appendix B reference to Section 16.
Instruction Monitor Interrupt handling change.

Rewrote Interrupt Priority description in an
attempt to clarify Figure 2-20 on page 2-21.
The length of this change necessitated an
additional page such that material formerly on
pages 2-25 thru 2-29 is now on pages 2-26 thru
2-30.

Changed from one to multiple guard digits..

Added a new paragraph to clarify ICR AGE
command word format.

Changed bit format to include the second soft
error counter.

Corrected typo in table: XFER to MFER.

Changed from A-1 thru A-34.

Added statement explaining the effect on
scrubbing for the Reset ECC Bits assist
command.

Changed from B-1 thru B-10.
Changed from C-1 thru C-4.

Updated instruction times for LXA and LDM.
Updated instruction time for STDM.

Updated instruction times for SCAL and SRET.
Reduced because DSE Registers are no longer
stored.

B-1

REVISION B

EDCP PAGE DESCRIPTION OF CHANGE
IOP POO 85-C67-004 is being incorporated
into this document as Appendices I, II, III.
86-1015S-011| Appendix I
86-101S-011|I-4, I-5, The following pages contain single margin bars
I-7 thru which indicate changes from the original IOP
I1-7D, 1-8, POO and are being carried over into this
I-10, I-13, |document from 85-C67-004.
I-14, I-17,
I-20, I-21,
I-29 thru
I-31, I-34,
I-36 thru
I-40,
I-46 thru
I-52

Appendix II

II-18,
II-51,
I1-71,
I1-94,
I1-97

Appendix III

III-14,
I11-17,
III-18,
II1-19,
I11-21,
III-30,
II1-39,
III-74

REVISION B

EDCP PAGE . DESCRIPTION OF CHANGE
86-1015-011| Appendix I

I-7A Clarification of data to be used for forcing
errors.

I-7D Correct typing errors.

I-8 Correct three typing errors. Clarify parity
error symptoms and recovery.

I-17 Nomenclature change.

I-19 Clarification that all other interrupts are
reset by this PCO.

I-20 Removed appliéable termination control latches
information.

I-21 Explanation that terminate output driver 1is
permanently inhibited by the hardware.

I-22 Same as I-21.

I-24 Added note that Test and Enable do not force
the new parity interrupts.

I-36 Specified priority of interrupt error
condition.

I-39 Flagged Bits I-31 as unavailable.

I-40 Added note that those errors do not generafe
interrupts. Clarified PS overtemperature.
Flagged Bits 1, 2 as unavailable.

I-43 Same as I-21.

I-47 Changed HISAM dump from Bit 14 to Bit 15.

REVISION B

EDCP PAGE ‘ DESCRIPTION OF CHANGE

86-101S-011| Appendix II

II-13 Changed reference to AP-101S Design Workbook.
II-14 Same as II-13. Corrected typing error.

II-20 Removed fail latch reference in two places.
II-24 Removed DMA error and DMA channel reference.

Changed to parity error "during" instruction
and data read.

1I1-96 Added OPX field for diagnostic data flow error
test.

Appendix III

ITI-17 Corrected typing error.
ITII-20 Removed fail latch reference in two places.
ITI-25 Removed DMA error and channel logic reference.

Segregated termination latch detected by IOP
hardware.

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-1015-024 1-1 Added reference for AP-101S/AP-101B comparisons
document.
86-1015-024 2-3 Removed comment about 128K or less programs using the
DSEs.
86-101S-024 2-6 Added reference to Effective Address Generation Chart on
page 11-1.
86-1015-024 2-16 Removed typo "Z" from "16-Bit Branch Address." Added
explanation for IC relative expansion.
86-101S-024 2-18, 26 |Move instruction monitor paragraph from 2-26 to 2-18.
86-101S-024 2-19 Added missing information to Bits 48-63 of Figure 2-19.
86-1015-024 2-20 Correct Instruction Address Bit designation.
86-1015-024 2-21 Corrections to Interrupt Structure and Priority Table.
86-101S-009 2-23 Added reserved area for BCE 25.
86-101S-024 2-29 Changed Decimal designations to Hex. Added Memory Store
Protected note.
86-101S-024 3-1- Clarified IOP as I/0 Device. Added note clarifying DMA
can occur between CPU memory cycles.
86-101S-024 3-2 Clarified IOP as I/0 device.
86-1015-024 4-5, 22, Added warning note for DMA being enabled during
32, 34 instruction execution.
7-4, 5, 8,
9, 12, 15,
20, 9-5
86-101S-024 9-2 Correct typesetting.
86-1015-024 9-17, 18 |Clarified DMA is not allowed during fetch and storeback.
Add counter execution times.
86-1015-024 10-3 Correct Soft Error Counter Bit designations. Added
Counter Execution times and figure 10-1 reference.
86-101S-024 10-4 New Page: Added definition of MFER/MMU bits.
86-1015-024 13-1 Remove SRS, BROV and CRY from 1100 OP code.

c-1

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 15-4, 10, Added missing execution times.
13 thru 16,
18, 19, 24,
26, 27, 28
87-101s5-047 2-22, 23; DSE instruction enhancement; text on page 2-23 moved
9-8, 19, back to page 2-22 to allow room for expanded
20, 22, Figure 2-21.
17-3, 4
86-101S-024 2-1, 7-13, Clarifications and typo corrections.
8-27, 10-2
I-2, 3, 5,
7A, 7D, 8,
17, 35, 40,
45, 52,
II-24, 25,
III-5, 19
thru 22, 24
thru 26, 29,
30, 43, 54,
55, 59, 74,
75, 81
87-101S8-047 17-3, 4 LDM, LXA, STDM, STXA execution changed.
86-101S-009 I-7D, Added details of IOP shutdown when an IOP Data Flow
I1-25, Parity Error occurs.
I11-27
86-1015-024 I-13 thru Changed DO/DI Bit designations to correspond to ALD's
I-15, I-45 and Specification. Flagged High Speed Discretes.
thru I-49 Clarified Sync Discrete numbering.
86-101S-009 I-8, 17 Processor 25 update.
86-1015-024 I-22 Clarified Note.
86-1015-024 I-25 Removed Bit 25 as self test.
86-101S-024 I-36 Rephrased for multiple error occurrence.
86-101s-024 II1-15 Added Bit Alignment note to IL description.
86-101S-024 II-70 Changed & NIX to @ NIX.
86-101S-024 I1-97 Added explanation of OP code 011.

c-2

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 III-6 Added "Common IOP Addr" in IUA field.
86-1015-024 I1I-7 Corrected half word numbers. Added note for CPU and
IOP Memory Addressing.
86-1015-024 III-10 Changed "I" field to "M". PC clarification for "DISP"
field.
87-1018-049 | III-14, Changed for #MIN instruction update.
15, 76
86-101S-024 | III-14 Added reference paragraphs.
86-1015-024 III-15, Corrected gap time.
20, 48, 52
86-101S-024 III-17 Added paragraph for BCE programmable registers.
86-1015-024 II1-27 Added section for MIA Busy when asked to transmit.
86-1015-024 III-32 Removed nonapplicable programming note detailing
indexing.
86-101S-024 I1I-42 Added reference to listen mode/command mode
differences. :
86-1015-024 III-44 Added gap time‘details.
86-101S-024 III-50 Added paragraph for IUAR loading during #CMD and #CMDI.
86-101s5-024 III-52 Removed nonapplicable programming note.v
86-101S-024 III-53, 56 Added paragraph for GPC to GPC word transfers.
86-101S-024 ITI-65 Added #CMDI reference for Listen Mode. |
86-1015-024 III-70 Added typical time out detection time.
86-101S5-024 III-76 BCE IUAR in listen mode reference.
86-101s-010 ITII-80 Added details for real time MIA parity checking.

Changed "I" field to "M".

c-3

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 III-81 Added note for additional listen mode implementation.
86-101S-024 I11-86 Removed nonapplicable paragraph.

86-101S-024 I11-87 Separated #CMDI from #CMD.

C-4

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 1-1 Deleted paragraph referencing the "AP-101B/AP-101S
Comparisons" document.

NA 2-15 Missing word added. Added word "to".

NA 2-16 Text added to clarify the action of the second stage
addressing when the high order address bit = 0.

NA 2-18. Deleted text concerning PSW bit 45.
Added a line at the top of the page that was left out from
the old GPC POO.

NA 2-21 Mask for CPU store protect revised from bit 45 to R
(CPU store protect not maskable).

NA 2-21 Made a note on the old PSW designation for CPU multibit
error.

NA 2-21 Interrupt priorities changed to put the EXT 1 INT (AGE)
ahead of the other EXT INTs.
Footnote added about CPU multibit error as referenced on
page 2-25,

NA 2-22 Reference to bit 45 mask deleted.

NA 2-25 Note added on CPU multibit error.

NA 2-25 Group 0 interrupts section clarified.

NA 2-26 Text concerning CPU store protect mask bit 45 deleted.

NA 2-27 BCE 25 processor storage (00A4-00A5) added to list of PSA
locations to not be store protected.

NA 4-24 Typographical error corrected. Added an "s" to replace.

NA 5-2 Programming note changed.

NA 7-13 Corrected typographical error.

NA 7-14 "Do not exceed ;ight" changed to "do not exceed sixteen".

NA 8-2 Sign corrected on exponents.

NA 8-15 CVFL diagram replaced with copy from AP-101B POO.

D-1

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 8-26 Corrected typographical error.

NA 9-2 Changed reference from "Appendix A" to "Section 15."

NA 9-8 Last sentence under programming note - corrected from STM to
STDM. Flow chart corrected. Programming note clarified for
instruction main store addresses crossing 32K boundaries.

NA 9-20 The R1 designator was deleted and a note was added at the
bottom of the page. ’

NA 9-21 Corrected wording in description section for bit 20 and 27.

NA 9-22 The Rl designator was deleted and a note was added at the
bottom of the page.

NA 10-3 The ICR instruction operation was clarified by expanding the
code column to 32 bits.

NA 13-1 SRS branch on count deleted.

NA 15-1 Changed word "Reference" to "Section."

NA 15-19 Added I/0 delay times.

NA 15-29 External 4 interrupt added. Note added to bottom of page.

NA 15-33 An error code of 70 "EDAC error during reset" added.

NA I-2 Changed description for bits 17 through 31 from "NOT USED"
to "IGNORED."

NA I-4 Information pertaining to AP-101B crew trainers and
prototypes deleted.

NA I-4 Four occurrences of "spare not used in flight IOP" deleted.

NA I-10 Bits 25 - 31 bracketed.

NA I-22 Removed note.

NA I-24 The effect of the Test Interrupts PCO on the interrupt
registers clarified.

NA I1-37 Bits 6 - 31 bracketed.

NA I-43 Changed wording for bit 19 of RM status register.

D-2

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA IT-iii Typographical error corrected. Spelling of "general"
corrected.

NA II1-13 Removed reference to design workbook.

NA II-101 Added Appendix number to page numbers in MSC Instruction
Summary Chart.

NA II-102 Added Appendix number to page numbers in MSC Instruction
Summary Chart.)

NA I1I1-4 "Power surge" changed to "power".

NA ITI-8 Corrected typographical error.

NA III-11 Added note regarding direct addressing mnemonics.

NA III-14 Text aligned.

NA III-15 Changed page spacing.

NA III-20 Changed wording in section defining signals that set BCE
Halt bit to O.

NA III-25 Eliminated termination latch from Error Summary Chart.
NA III-26 "Invalid Manchester, or bit count error" added under the
parity error on input data.

NA II1I1-27 The "wrong bit encoding bit count error" section deleted.

NA I1I-43 Added note for MIA Busy.

NA III-48 Typographical error corrected. Last paragraph
corrected.

NA III-50 Clarified descriptions for #CMD and #CMDI.

87-101s-051 III-52 Removed program note for microcode error (microcode
corrected).

NA III->58 Added note for MIA Busy.

87-101S-049 III-75 Removed description of microcode anomaly (microcode
corrected).

87-101S5-049 III-80 Note on limited assembler support for this OP code.

Corrected typographical errors.

D-3

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA I1I-88 Added Appendix number to page numbers in BCE Instruction
Summary Chart.

'NA III1-97 Restored paragraph inadvertently deleted.

REVISION E

EDCP PAGE DESCRIPTION OF CHANGE

NA 2-21 Remove statement "Maskable Only in Problem
State, PSW 47=1" from Interrupt priority
C2.

Add an X in Not Maskable column for Store
Protect Interrupt.
NA 8-22 Correct condition code for Load Complement
) (Short Operands) for positive results.

NA I1-24, 25 Remove "Terminal Control plus" from last
IOP error description on page II-24. Move
paragraph extension on top of II-25 back
to II-24.

NA III-8 Change I to M for Short Format 1 Index
Specification.

NA III-15 Remove duplicated sentence under bit 23
description.

NA III-48 Add an "or" between #MIN and #MINE.

REVISION F

EDCP PAGE DESCRIPTION OF CHANGE

NA vi Replaced "(This page intentionally left
blank)" with "NOTE: Use of fields marked
as reserved can result in unpredictable
machine operation."

NA 2-14 Replaced "1" in bit position 0 of
Fig. 2-17 with MSB and added explanation.

NA 2-15 Deleted page and replaced with flow
chart.

NA 2-21 Added Anomaly Notes to Fig. 2-20.

NA 2-23 Clarification of "Reserved" locations
in Fig. 2-21.

NA 8-12 Deleted statement in description.

NA 8-12a Added Anomaly Note for CEDR/CED instruc-
tion.

NA 8-12b New Page: Added " (This page intentionally
left blank)".

NA 8-17 Added Anomaly Note for DEDR/DED instruc-
tion.

NA 9-8 Revised statement on MOVE HALFWORD
interruptibility.

NA 9-8a New Page: Added Anomaly Note for MOVE
HALFWORD instruction.

NA 9-8b New Page: Added "(ThlS page intentionally
left blank)"

NA 9-19 Corrected instruction bit 31 designation.

NA 15-32 Changed "FOV Fail" to "YOV Fail" for
Error Code 5A description.

NA 17-3 Corrected instruction execution time
calculation for MVH RR (COUNT ODD).

NA I-36 Changed "Dev out data error" to "Dev out
data parity error" under ERROR CONDITION.

NA III-14 Corrected bit 26 designation for TO.

NA III-59 Deleted first paragraph at top of page.

TABLE OF CONTENTS

Paragraph Title fage

1.0 AP-1015 AITH SHUTTLE INSTRUCTION SET e e e e e e e e e e e e e e e 1-1

2.0 AP-101S STRUCTURE .. e e e e e e e e e e e e 2-1
2.1 SHUTTLE INSTRUCTION SET e e e e e e e e e e e e e e e e 2-1
2.1.1 Information Formats c e e e e e B R B P TR Rt 4 . 2-1
2.1.2 Addressing ¢ e e s e e e e e e 2-2
2.1.3 Information Positioning O T 2-2
2.2 CENTRAL PROCESSING UNIT . . S U 2-2
2.2.1 Program Addressable Regtsters e A 2-2
2.2.2 Fixed Point Data Representation o v e e e e e e e 2-4
2.2.3 Instruction Formats e e e e e e e e e e e e e e e 2-4%
2.2.%4 RR Format Instructions e e e e e e e e v e e e e e e e e 2-6
2.2.5 SRS Format Instructions L 2-6
2.2.6 SI Instructions e e e e . 2-8
2.2.7 RI Instructions e e e e e e e e e e e e e e e e e 2-9
2.2.8 RS Format Instructions e e e e e e eiaie FEE ehE N iwil il 2-9
2.2.9 Expanded Addressing L T S 2 B
2.3 PROGRAM EXECUTION . e . S e e v e e e e e e e WS el . 2-17
2.4 STORAGE PROTECTION FEATURES e e e e e e e e e e e e W e 2-17
2.4.1 Instruction Monitor Feature s s e e e e e e e e e e e e e e . . 2-18
2.5 MACHINE STATUS c e 2-18
2.5.1 Program Status Word © s et e e e e s e e e e e e e e e e e e e . 2-18
2.5.1.1 PSW Fields L T K
2.5.2 Interrupts St e e e e e et e e e e e e e e e e e e e e e e . 2=22
2.5.2.1 Interrupt Handling S e . 2=26
2.5.2.2 Interrupt Priority c e e e e e e e e e e e e e e e e e e e . 2=25
2.5.2.3 Interrupt Masking e e e e . e e e e e e e e e e e e .. 2-26
2.5.2.4 Preferred Storage Area (PSA) As%lgnments e e e e e e e e e e . 2=27
2.5.3 <eneral System Operation © e e e e et e e e e e e e e e e e e . 2=217
2.5.3.1 I ower-0n Tt et e .. o2-28
2.5.3.2 System Reset C s s e . 2-28
2.5.3.3 IPL S S o, ¥ -
2.5.4 Operating State C ot s e e e e e e e e e e e e d e e e e d e e e . 2-29
2.5.64.1 Program State Alternatives e v e e e e e et e e e e e e e . 2-29
2.5.5 Architectural Growth S e e s e et e e e e e e e e e e e e e . o 2=-30

3.0 CPU Iv/0 e e e e e T O 3-1
3.1 DIRECT MEMORY ACCESS OPERATION . .. o e e e e wie kil el 3-1
3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION e e e el sfie eTF 4 e e e 3-1
3.3 PROGRAM-CONTROLLED I/0 INSTRUCTION e e e e e e e e e e e e e e e 3-1

4.0 FIXED POINT ARITHMETIC L 6-1
4.1 ADD o St s s e e e e e e e e e e e e e e e e e e e 4-2
4.2 ADD HALFHORD . e St e e e e e e e e e e e e e e e e e e e -3
4.3 ADD HALFWORD IMMEDIATE c e e e e e e e e e e e e e e e e e G4
4.4 ADD TO STORAGE St e 4-5
4.5 COMPARE . . L T, 4-6
4.6 COMPARE BETNEEN LIMITS S e e e e e e e e e e e e e e e e e e e 4-7
4.7 COMPARE HALFWORD St e e et e e e e e e e e e e e e e e e 4-8
4.8 . 4-9

COMPARE HALFWORD IMMEDIATE R T T O

Paragraph

TABLE OF CONTENTS

Title

4.9 COMPARE IMMEDIATE WITH STORAGE
LIYIJE .
EXZHANGE UPPER AND LOWER HALFNORDS
INSERT ADDRESS LOW e e e e
INSERT HALFWORD LOW .« o .

4.10
4.11
.12
.13
4.14
4.15
4.16
.17
4.18
4.19
.20
4.21
4.22
4.23
%.24
.25
4.26
4.27
.28
4.29
4.30
.31

5.0 BRANC
5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.1

LOAD

. ° 0y . ° . . .

LOAD ADDRESS . e ..
LOAD ARITHMETIC COMPLEMENT .
LOAD FIXED IMMEDIATE - e e .
LOAD HALFWORD « e s e e e s
LOAD MULTIPLE
MODIFY STORAGE HALFNORD . .

MULTIPLY

-

MULTIPLY HALFNORD « e e e
MULTIPLY HALFWORD IMMEDIATE

MULTIPLY INTEGER HALFWORD .
STORE
STORE HALFWORD C e e e e e

STORE MULTIPLE C e e e e e

SUBTR

ACT

- - - . . .

SUBTRACT FROM STORAGE o .
SUBTRACT HALFWORD « e e e
TALLY DOWN c e e e e

HING

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

- . . ° ° . e o ° ° .

AND LINK e e e e e e
AND INDEX o« e e e e

ON
ON
ON
ON
ON
ON
ON

0 BRANCH ON OVERFLOW AND CARRY

CONDITION e e e
CONDITION BACKWARD

CONDITION (EXTENDED)
CONDITION FORWARD

COUNT« .
COUNT BACKNARD - .
OVERFLOW AND CARRY

6.0 SHIFT OPERATIONS e e e e e e e e
6.1 NOKMALIZE AND COUNT .. .
LEFT LOGICAL c e e e
LEFT DOUBLE LOGICAL . .
RIGHT ARITHMETIC .« .
RIGHT DOUBLE ARITHMETIC
RIGHT DOUBLE LOGICAL .
RIGHT LOGICAL o« e e e .
RIGHT AND ROTATE .« .
RIGHT DOUBLE AND ROTATE

[N« LT < B T o N« (R)
N N o
W 0O BN

.

St .FT
SHIFY
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

7.0 LOGICAL OPERATIONS e e e e e e e

7.1

AND .

7.2 ANRD HALFNORD IMMEDIATE o« .

ULt uuLu uwm
I t |
W O VWL UUN

(S T
[}
[y

o ONONONONON NN
|

[}
= o Vv NOo UL HN

o o
[
] b e

NN
U
W N -

TABLE OF CONTENTS

Paragraph Title

S W

= 0 00~ o

NN NN
. .

8.0 FLOAT
8.1

LS I FYRN \NY

o e e
= =0 00N o

0 00 00 00 00 00 00 O 00 00

AND IMMEDIATE WITH STORAGE e e e
AND T3 STORAGE c e e e e e e e e e
EXCLUSIVE OR e e e e e e
EXCLUSIVE OR HALFWORD IMMEDIATE . .
EXCLUSIVE OR IMMEDIATE WITH STORAGE . .
EXCLUSIVE OR TO STORAGE c e e e e
OR e e e e e e e e e e e e

OR HALFWORD IMMEDIATE e e e e e
OR TJ STORAGE e e e e e e e e e
CEARCH UNDER MASK C e e e e e e e
SET 3ITS e e e e e e .
SET HALFWORD e e e e e e e e e e
TE5T BITS e e e e e e e e e e e
TEST REGISTER BITS e e e e e e e e e
TEST HALFWORD e e e e e e

ZERO BITS C e e e e e e e e e e e .
ZERO REGISTER BITS e e e e e e e e .
ZERO HALFWORD c e e e e e e e e e e

ING PJINT OPERATIONS C e e e e e e e
DATA FORMAT © e e e e e e e e e e e
NUMBER REPRESENTATION c e e e e e e e
NORMALIZATION e e e e e e .
FLOATING POINT SECOND OPERANDS o e e
FLOATING POINT REGISTERS e e e e e
FLOATING POINT INSTRUCTIONS c e e e . .
CONDITION CODE o e e e e e .
FLOATING POINT ARITHMETIC EXCEPTIONS

ADD (LONG OPERANDS) e e e e e e e e e
ADD (SHORT OPERANDS) e
COMPARE (LONG OPERANDS) e e e e e
COMPARE (SHORT OPERANDS) c e e e e e
CONVERT TO FIXED POINT c e e e e e ..
CONVERT TO FLOATING POINT .« e e
DIVIDE (LONG OPERANDS) c e e e e e e
DIVIDE (SHORT OPERANDS) T
LOAD (LONG OPERANDS) B
LOAD (SHORT OPERANDS) S L.
LOAD COMPLEMENT (SHORT OPERANDS) o
LOAD FIXED REGISTER L
LOAD FLOATING IMMEDIATE N
LOAD FLOATING REGISTER S
MIDVALUE SELECT (SHORT OPERANDS) « .
MULTIPLY (LONG OPERANDS) c e e e e
MULTIPLY (SHORT OPERANDS) c e e e e
SUBTRACT (LONG OPERANDS) < e e e e e
SUBTRACT (SHORT OPERANDS) e e e e
STORE (LONG OPERANDS) c v e e e e e
““ORE (SHORT OPERANDS) e e e e e e e

. . . -

[
[| [T I D |
N O ®OD U WWHNRN P

00 00 CO 0 00 00 00 00 Co
1

TABLE OF CONTENTS

Paragraph Title Page
9.0 SPECIAL OFERATIONS e e
9.1 DIAGNOSE (DETECT) e e e e e e e e e e e e e e e e e e s 9-2
9.2 INSERT STORAGE PROTECT BITS e e e e e e e e e e e 9-4
9.3 LOAD PROGRAM STATUS e, 9-6
9.4 MOVE HALFWORD OPERANDS e e e e e e e e e e e e e e e e 9-7
9.5 SET PROGRAM MASK e e e e e e e e e e e e e e e s s s 9-9
9.6 SET SYSTEM MASK S Y
9.7 STACK CALL D B |
9.8 STACK RETURN e e e e e e e e e e e e e e e e e e e s e s s sy 9106
9.9 SUPERVISOR CALL e e e e e e e e e e e e e e s e s s s s s s 918
9.10 TEST AND SET A T
9.11 TEST AND SET BITS - I B
9.12 LOAD EXTENDED ADDRESS e
9.13 LOAD DSE MULTIPLE e B X)
9.14¢ STORE EXTENDED ADDRESS S B3 !
9.15 STORE DSE MULTIPLE - B
10.0 INTERNAL CONTROL OPERATIONS e 1 B
10.1 INTERNAL CONTROL S £ B
11.0 AP-101S SHUTTLE INSTRUCTION SET P B S |
11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHART T 5
12.0 AP-10iS INSTRUCTION REPERTOIRE S -2 !
12.1 SHUTTLE INSTRUCTION SET e P!
13.0 AP-101S OP CODE ASSIGNMENTS B 0
16.0 AP-101S INSTRUCTION SET e e e e e e T T T
14.1 AUTOMATIC INDEX ALIGNMENT DESCRIPTION B T |
15.0 AP-101S DIAGNOSTIC FUNCTIONS T T
16.0 PIPELINE TIMING CONSIDERATIONS e e R ¥
16.1 INSTRUCTION EXECUTION - PIPELINE BASICS T 1|
16.2 LONG INSTRUCTIONS - NON-SINGLE-CYCLE EXECUTION e e e e e e e . 162
16.3 BRANCH INSTRUCTIONS - RESTART THE PIPELINE e e e e e e e e e . .o16-2
16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER e e e« 16-5
16.5 STORE INSTRUCTIONS - MULTIPLE MEMORY CYCLES S
16.6 STORE CONFLICT - MODIFY PREFETCHED MEMORY OPERAND e e e e e o .. 16-6
16.7 SUCCESSIVE STORES - BACK-TO-BACK STORES - e . e e e+ <« .« . 16-8
16.8 I UNIT HAZARD -~ MODIFICATION OF PREFETCHED INSTRUCTION e e v . . . 16-8
16.9 CONFLICT/HAZARD SUMMARY e T 28
17.0 AP-1015 INSTRUCTION EXECUTION TIMES T Y A |
APPENDIX I - IOP P0OO FOR PROGRAM-CONTROLLED INPUTS AND OUTPUTS T € |
APPENDIX II - IOP POO FOR MASTER SEQUENCE CONTROLLER S & £ 1
APPENDIX III - IOP POO FOR BUS CONTROL ELEMENT e e e e e e e e e e e e I1I-1

iv

Figure

NN NN
L B O T]
NOU D N

NNN!})NNN
(=]

LIST OF FIGURES

Title

Instruction and Operand Bit Humbering

General Register Addresses

Fixed Point Operand Formats .

Basic Instruction Formats e e e e e e e e
The RR Instruction Formats . .

SRS Instruction Format . .« e e e

SRS Halfword Addressing © e e e e e

SRS Fullword Addressing e e e e e e e e e e e
SI Instructions e e e e e e e e e e e e
RI Instructions . C e e e e e e e e e e e e e
RS Instruction Formats e e e e e e e e e e e e

Displacement Alignment for Extended Addressing ..

Automatic Index Alignment .. .
Displacement Alignment for Indexed Addressrng . . .
The Contents of Indirect Address Storage Modi fication Word
The Contents of Index Register X e e e e e e e e
Fulluword Indirect Address Pointer e e e e e
Expanded Addressing © e e e e e e e e e e e e e

PSW Fields e e e e e e v e e e e e e e e e e
Interrupt Structure and Priority e e e e e e e
Preferred Storage Area Assignments e e e e

CPU Mode Switching e s e e e e e e e e e e e e
Shift Count © s e e e e e e e e e e e e e e e e
Normalize and Count Execution e o e a4 e s e s
Floating Point Operands in Registers

Combinations of Fractional Precision for Floatlng Po'

Operands c e e e e e e e . .« e e e .
Condition Code Setting for Floating Point Arithmetic
Move Halfword Execution . e e e e e e e
Current STACK Status - Prior to SCAL e e e e e e
STACK Status - Upon Completion of SCAL « e e 4 e .
MFER/MMU Registers c e e e e e e e e e e .

Dissection of Instruction e e e e e e e e
Pipeline Hardware Elements e e e e e e e e e e e
Pipeline Advantage s e e e e e e e e e e e e e
Long Instruction c e e e e e e e e e

Branch Taken L
Register Conflict S S,
Store Instruction c e e e e e e e e e e e e
Store Conflict e e e e e e e e e e e e e e e
Successive Stores e e e e e e e e e e e e e e
I Unit Hazard c e e e e e e e e e e e e e e

R
(]
1]

N NN NN
L O I T |
Ul Dl

|
O O W kBN

NNI})NN

[AS I\ IS I SR XY

L T R I Y
[el ™ S
W wWwN

NOTE: Use of fields marked as reserved can result in unpredictable machine operation.

1.0 AP-101S WITH SHUTTLE INSTRUCTION SET

The AP-101S is a high-speed, general-purpose computer intended primarily for
real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is software compatible with the AP-101C/M, described in IBM No.
62646156B, 30 January 1979. This family shares, and is unified by, extensive design
experience, proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description of
the CPU system structure; the arithmetic, logical, branching, and status switching;
and the interruption system. This publication defines and describes features common
to all AP-101S CPUs including the ground version, the AP-101S5/G computers that do

not contain an IOP.

Both computers contain a pipeline architecture CPU, and techniques for efficiently
Programming it are contained in Section 16 of this document.

1-1

(This page intentionally left blank)

1-2

2.0 AP-103iS STRUCTURE

2.1 SHUTTLE INSTRUCTION SET

The AP-1015 system structure encompasses the functional operation of main storage,
the central processing unit (CPU), and program—-controlled I/0 facilities.

2.1.1 Information Formats

The system transmits information between main storage and the CPU in units of 16
bits, or in integer multiple of 16 bits. Each 16-bit unit of information is called
a halfword. Six error correction bits and three voted storage protection bits are
also associated with each halfword for the AP-101S but later references in this
manual to the size of data fields exclude these bits. The AP-101S5/6G has two storage
protect bits per halfuword.

Halfwords may be handled separately or in pairs. A fullword is a group of two
consecutive halfwords. Both halfword and fullword instructions and operands are
used. Their location is always specified by the address of the leftmost halfword
(leftmost halfuword is the numerically smallest address). The instruction length is
designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are
consecutively numbered from left to right, starting with the number 0, as shown in
Figure 2-1.

Haifword
I

0 15

Fullword
llll!l!ll!lllllllllllllllllllll
Y 15 16 31

Figure 2-1. Instruction and Operand Bit Numbering

2=1

2.1.2 Addressing

Halfword locations in storcge are consecutively numbered starting with 0. Each
number is considered the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to a maximum of 2!°® halfword addresses. This
set of main storage addresses includes some locations reserved for special purposes,
such as program status words; consequently, these special locations should not be
used for any purpose not implicitly defined.

2.1.3 Information Positioning

Unlike previous versions of the AP-101 computer, the AP-101S does not require either
fullword instructions or fullword/doubleword operands to be located in main storage
on even boundaries.

2.2 CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main =torage,
for fetching or storing information, for arithmetic and logical processing o+ data,
for sequencing instructions in the desired order, and for initiating the
communication between storage and external de:ices.

The control section guides the CPU through the functions necessary to execute the
program.

2.2.1 Program Addressable Registers

Two sets of eight fixed point general registers and one set of eight floating point
registers are under explicit program control. Th2 contents of one or more of these
registers (32 bits) participate in most CPU operations. Associated with each of the
fixed point registers is a 64-bit addressing extension register (Data Sector
Extension or DSE), the use of which is described below in Extended Addressing.

Conceptually, an additional doubleword status register, called the program status
word (PSW), is the focal point for machine status. The contents of the PSW are

updated during each instruction. Consequently, the PSW reflects current machine
status following every instruction. The PSW participates implicitly in status
switching, branching operations, and address calculations. Condition codes

resulting from an instruction are also part of the PSW.

In addition to the PSW and the general and floating point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and operand storage. These registers are of no direct concern
to the programmer and are not described herein.

2=-2

The contents of the PSW specify which of the two sets of general registers is in
current use. Only the contents of the selected general register set can participate
in arithmetic operations and the contents of unselected sets of general registers
cannot be altered by a program. An alternate set of general registers can be
selected by changing the PSW. Only one set of the fixed point, general-purpose
registers and the floating point registers are available to the program at any one
time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative
addressing. Each set of general registers is numbered from 0 through 7 and is
addressed as shown in Figure 2-2.

General Register Function

Register

Number Operand Base Index
0 000 00 : None
1 001 01 001
2 010 10 010
3 011 11 or None™ | 011
4 100 100
S 101 101
6 110 110
7 111 111

%11 = Register 3 for SRS; none for RS

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

For addressing data, general registers 0-3 can be augmented by 4-bit Data Sector
Extension (DSE) registers or by the DSR in the PSW to address beyond 16-bit
capabilities. There are 16 DSEs, one for each of the eight general-purpose
registers in each of the two sets of general registers.

For some operations, a pair of general registers is linked to form a 664-bit
doubleword register. The most significant half of a doubleword operand is contained
in the specified register; the least significant half of the doubleword is in the
next higher-numbered register (determined by Modulo 8 addition of one (1) to the
specified register). Note: If Reg 7 is specified, the least significant half of
the double word operand is contained in Reg. 0.

2.2.2 Fixed Point Data Representation

Data representation is fractional, with negative numbers represented in tuwos
complement form. A halfword operand is 15 bits plus sign, a fullword operand is 31
bits plus sign, and a doubleword operand is 63 bits plus sign, as shown in Figure
2-3. ’

Fixed-Point Halfword Operand

S Fraction

Fixed-Point Fullword Operand

Fixed-Point Doubleword Operand

S Fraction g g

0 1 63

Figure 2-3. Fixed Point Operand Formats

In fractional data representation, the binary point is immediately to the right of
the sign.

2.2.3 Instruction Formats

The length of an instruction format can be either one or two halfwords. Long format
instructions provide maximum range and extended flexibility <for addressing storage
operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that, in many instances, any
given operation can be coded using either a halfword or a fullword instruction. 1In
such cases, maximum use of halfword instructions results in increased storage
efficiency and performance.

The three basic instruction formats are as shown in Figure 2-4. Halfword
instructions are automatically selected by the assembler unless otherwise specified
by the programmer.

RR Format

(o]
Op R1 p R2
| | Ll dvlifr]olX] ||
0 4 5 7 8 11 12 13 15
SRS Format
op R Dise” 52 “Displa f the f 111XXX
isplacements of the lid.
[1| 1 P11 | p en orm are not vali
0 4 5 7 8 13 14 15
RS Format
0 A I
Op R1 Plm| B2 Address Specification
| 1 AN REREREE L Lttt
0 4 5 7 8 1112 13 14 15 16 31

Figure 2-4. Basic Instruction Formats

The fields within the instruction formats usually are used as described belouw.
described in conjunction

exceptions are
instructions.

Op This 5-bit field defines an operation, or the class

with the individual formats

of operation,

The
and

to

R1

R2

B2

Disp

oPX

AM

be performed Wy tr- ~PU,.

This 3-bit field designates the register containing the first operand.
Except for operations which alter main storage, the result usually
replaces the first operand.

This 3-bit field appears only in the RR format. It is used to speci fy
a general register containing either the second operand or the address
of the second operand.

This 2-bit field specifies the register containing the base address.
In halfword SRS format instructions, this 6-bit field is called the
displacement. For the SRS format, the displacement is added to the
base address specified by the B field to obtain a storage address.

This bit is an extension of the 0P field.

This field designates one of two fullword format addressing options.

Address The second halfword of a fullword instruction is specified as either

Specifi- extended or indexed addressing.
cation

See the Effective Address Generation Summary Chart, page 11-1.

2.2.4 RR Format Instructions

The RR format instructions (Figure 2-5) permit the specification of operations that

use two general registers.

(o]
Op R1 p R2
| L L trjrjrjoix) | |
0 4 5 7 8 1112 13 18

Figure 2-5. The RR Instruction Formats

The operation normally uses as operands the contents of two general registers.
R2 field specifies the second operand while the R1 specifies the first operand.
result of the operation usually replaces the first operand.

2.2.5 SRS Format Instructions

The SRS instruction format (Figure 2-6) is a compression of the RS format.
provides base plus displacement storage addressing.

° Displacements of the form

Op R1 Disp® 82 111X XX are not valid.
L1l [| | |
0 4 5 7 8 13 14 15
82 Register Containing Base
00 General Register 0
01 General Register 1
10 General Register 2
1 General Register 3

Figure 2-6. SRS Instruction Format

2-6

The
The

It

The R1 field specifies the first operand register address. The 19-bit effective
address (EA) of the second operand is developed as follows:

Step 1 First the positive integer contained in the displacement field is
added to the contents of the base contained in the general register
specified by B2.

When addressing halfword operands, the least significant bit of the
displacement field (instruction bit 13) is aligned with base register
bit 15. The 16-bit result is the sum of the base and the
displacement, aligned as shown in Figure 2-7.

When addressing fullword operands using the SRS format, the least
significant bit of the displacement field is aligned with base
register bit 14 as shown in Figure 2-8.

Unlike previous versions of this architecture, bit 15 of a base
register is significant when addressing fullword data. Fullword
storage operands may now be located on odd address boundaries.
Programs which utilize this feature will not be downward compatible.

Step 2 The 16-bit result of the addition of the base and displacement is

expanded (see Expanded Addressing) to a 19-bit effective address (EA),
and this is the address of the second operand.

l!llllslm! | 1'111115*&}\\\\&“\\%\\\?8&«32;

1

Disp Halfword Displacement
olojojojojojojojojol | | | | |
0 9 10 15
Base + Disp. 16-Bit Effective Address
Ll LUt
0 15

\ The low-order half of the general register containing
\ the base does not participate in SRS addressing.

Figure 2-7. SRS Halfuword Addressing

2=7

0 1516

Disp 0 Fullword Displacement
0jo0jojojojojojojof | | | 1 |
o] 8 9 14 15
Base + Disp 16-8Bit Effective Address
| I O 1 A O R R |
0 15

\\ The low order half of the general register containing
N

the base does not participate in SRS addressing.

Figure 2-8. SRS Fullword Addressing

Except for store instructions, the result of operation between the first operand
(the contents of general register R1) and the second operand (the contents of the
EA) replaces the first operand for SRS format operations. The first operand
replaces the second operand for store instructions.

2.2.6 SI Instructions

Direct initialization, modification, and testing of main storage is possible through
the use of an immediate data halfword appended to an SRS instruction. See Figure
2-9.

Op oPX Disp* 82 Immediate Data
[111 L | L1111 | I O O O O O
0 4 5 7 8 13 14 15 16 31
*Displacements of the form 111XXX are not valid.

Figure 2-9. SI Instructions

The address of the halfword second operand is developed in the normal manner for SRS
instructions using halfword addressing. Except for test instructions, the result of
the operation between the halfword second operand and the immediate data replaces

2-8

the second operand. The second operand is not altered for test instructions. The
first operand is never altered for SI instructions.

2.2.7 RI Instructions

Using an immediate data halfword appended to an RR instruction (Figure 2-10) permits
direct initialization, modification, and testing of the most significant 16 bits
contained in a general register.

0
Op oPX)P(R2 Immediate Data

L1 11 I | J1]1)1]0 |] T I I s e O R
0 4 5 7 8 1112 13 15 16 31

Figure 2-10. RI Instructions

Except for test instructions, the result of the operation between the second operand
and the immediate data replaces the second operand. The second operand is not
altered for test instructions. The immediate data first operand is never altered
for RI instructions. '

2.2.8 RS Format Instructions

There are two major classes of RS instructions, extended and indexed addressing
modes, differing in the techniques used to specify the second operand. See Figure
2-11.

0
Op R1 ; 3 82 . Address Specification
L1 I AEREREE | LAt ittt
0 45 78 11 1213 14 15 16 ' 31
AM
Extended : 0 Displacement
ettt
16 3
I
Indexed : 1 X All Displacement
| | Lt 1 11t 1
16 18 19 20 21 31

Figure 2-11. RS Instruction Formats

Extended addressing is specified when RS format bit 13 (AM) equals 0. This
addressing mode provides a full 16-bit halfword displacement. The base and
displacement are aligned as shoun in Figure 2-12 when base addressing is performed.

Displacement

I I N
16 3

Figure 2-12. Displacement Alignment for Extended Addressing

Aside from the size and alignment of the displacement, RS extended addressing
di ffers from SRS addressing in two other respects:

1. The alignment of the displacement is <the same whether addressing
doubleword, fullword or halfword operands. '

2. When B2 equals 11, base addressing is not performed. In this case, the
displacement is instead used directly as the effective address.

2-10

Indexed addressing is specified by RS format bit 13 (AM) equal to 1. This
addressing mode contains three additional fields. Normally, they contribute to the
effective address generation as follows:

X

IA

This 3-bit field specifies one of seven general registers containing

-the index. Indexing is not performed when X is equal to 000. An
index is contained in the upper halfword of a general register. The
index is automatically aligned as illustrated in Figure 2-13. For

additional information on index alignment, see Section 14. Consistent
with the restrictions that apply to register usage and indirect
addressing, general register contents can be used interchangeably as
either a base or an index or both. When indirect addressing is
specified, indexing follows indirect addressing (postindexing).

This format bit, when a one, specifies indirect addressing. Indirect
addressing is not perforned when this bit is zero. In the instruction
descriptions, the symbol 3 denotes IA for the assembler.

This format bit, in conjunction with X and IA, specifies various
address modes which are explained below. In the instruction
descriptions, the symbol # denotes I for the assembler.

The development of the EA for the indexed mode (including IC relative) of operand
addressing is explained in detail in the subsequent steps:

1.

Indexed addressing is specified by RS format bit 13 (AM) equal to 1. This
addressing mode provides an 11-bit displacement. The base and
displacement are aligned as shown in Figure 2-14 when indexed addressing
is performed.

The displacement is aligned so that bit 31 corresponds to base or index
bit 15 and displacement bit 21 corresponds to base or index bit 5. The

' displacement is expanded to 16 bits by appending five leading =zeros.

If B2 is not equal to 11, the 16-bit base, contained in the higher order
half of the specified register, is added to the aligned displacement.
This results in a preliminary effective address (PEA) whereby the PEA =
(B) + Displacement.

If B2 is equal to 11, the aligned displacement is added to zero. This
result is the preliminary effactive address (PEA) whereby the
PEA=Displacement.

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a
zero, then the 16-bit result of Step 2 is added to the contents of the
updated instruction counter (IC) to form the 16-bit EA whereby
EA=(updated) IC + PEA. (This EA is then expanded to a 19-bit EA, as
explained in the Expanded Addressing section, with the exception that the
Branch Sector Register (BSR) bits are used instead of the Data Sector
Register (DSR bits).

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a
one, the 16-bit result of Step 2 is subtracted from the contents of the
updated IC to form the 16-bit EA whereby EA = (updated) IC - PEA. (This

2-11

PEA
O O I
15
Index (Xg_1g) Halfword (Direct from Index Register

Bits 0—-15

RN =018l
15

PEA + Index EA

| I I I I
15

PEA
I T I O O I I
15
Index (Xq_1g) Fullword (Index Register Bits 0—15
Shitted Left 1)
| L1 L1111 o
15
PEA + Index EA
L1 1ttt
15
b. Fullword index Alignment
PEA
Lttt
15
Index (Xo_5) Double Word (sl::::d R;gfi:t;)r Bits 0—-15
L1 11 1 1111]ojo
13 14 15
PEA + Index EA
I T T O O A
15

¢. Double Word Index Alignment

Figure 2-13. Automatic Index Alignment

2-12

Displacement

olojojojol | | 11 1t b]|
16 20 21 31
Base
N O N I B O
0 5 15

Figure 2-14. Displacement Alignment for Indexed Addressing

EA is then expanded to a 19-bit EA, as explained in the Expanded
Addressing section with the exception that the Branch Sector Register
(BSR) bits are used instead of the Data Sector Register (DSR) bits.)

If the X field is all zeros, IA (bit 19) is a one and I (bit 20) is a
zero, then Indirect Addressing is performed. The l6-bit result of Step 2
is expanded to a 19-bit address and is used as the address of a main
storage halfword. This halfword is then fetched and expanded to 19 bits
by using expanded addressing to form the EA. EA=MS (PEA). Funectional
equivalency to preindexing capability can be obtained through modification

of the base.

If the X field is all zeros, IA (hit 19) is a one and I (bit 20) is a one,
Indirect Addressing is rerformed as described in Step 5 with a fullword
main storage pointer. Then, after the EA has been formed, storage
modification is automatically performed. The indirect address is
contained in a fullword. A modifier is contained in bits 16 through 31.
An address is contained in bits 0 through 15. The modifier is added to
the address and the resulting modified address replaces bits 0 through 15
of the indirect address word (see Figure 2-15).

Address Modifier

l!l!llllllll[l!l]!llllllllll!

15 16 3

Modified Addresg = MS (PEA) ~— MS (PEA) + MS (PEA + 1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word

If the X field is not zeros, IA (bit 19) is a zero and I (bit 20) is a
zero, the most significant 16 bits of the general register specified by
the X field are aligned, and then added to the 16-bijt result of Step 2
(PEA) to form the 16-bit EA (See Figure 2-13). (This EA is then expanded
to a 19-bit EA, as explained in the Expanded Addressing section.)

10.

If the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a
one, the most significant 16 bits of the general register specified by the
X field are aligned, and then added to the 16-bit result of Step 2 (PEA)
to form the 16-bit EA (see Figure 2-13). (This EA is then expanded to a
19-bit EA, as explained in the Expanded Addressing section.) (The
modifier is added to the address and the resulting modified address
replaces bits 0 through 15 of the index register after the EA s
determined.) Figure 2-16 jllustrates the address and modifier format in
the index register.

Address Modifier

lllllllllJ!l]lllll!llllljllill

0 15 16 k]|
Modified Address = (X)o_ls-——(X)o_ls + X16-31

Figure 2-16. The Contents of Index Register X

1f the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a
zero, Indirect Addressing (IA) with postindexing is performed. The 16-bit
result of Step 2 is expanded to a 19-bit address and is used to fetch a
main storage halfuword. The index contained in the general register
specified by X is aligned and then added to the fetched halfword to form
the 16-bit EA (see Figure 2-13). This EA is then expanded to a 19-bit EA
by using expanded addressing. Functional equivalency to preindexing
capability can be obtained through modification of the base.

If the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a
one, an indirect addressing mode is defined using a 32-bit fullword
indirect address pointer as follows:

a. First, the PEA from Step 2 must locate a fullword indirect address
pointer, with the format as illustrated in Figure 2-17.

M X CIC
S Address Reserved c B|D BSV Dsv
Bl Lt Lt Lttt 114 tololala 1 1 O I
0 1 15 16 1920 21 2223 24 27 28 N

Field Function

Xe Index Control

C Control to allow PSW modification

Cg Control BSV Usage

Cp Control DSV Usage

BSV (Branch Sector Vector) Selectively replaces BSR in PSW

DSV (Data Sector Vector) Selectively replaces DSR in PSW

MSB (Most Significant Bit) Determines type of address expansion

Figure 2-17. Fullword Indirect Address Pointer

'

2-14

b. Next the fullword indirect address pointer is expanded to a 19 bit address as follows:

FULLWORD INDIRECT
ADDRESS EXPANSION

YES NO

BRANCH
INSTRUCTION?

DATA INDIRECT
POST-INDEX _,

DATA
.1 INDIRECT

BRANCH EA=ADDR + (X) 2
TAKEN? AUTO INDEX EA=ADDR
ALIGNED

EXECUTE NEXT
INSTRUCTION

=0
WHEN C=0,
CB AND CD ARE
RESERVED AND
MUST BE 0. BASE
REG
MODIFY PSW
=3
CBICD ACTION
0/0 NONE EXPAND EA EXPAND EA EXPAND EA EXPAND EA
on DSR=DSV USING DSR USING DSV USING DSE USING 0000
T 10 BSR=BSV
f/ n DSR=DSV &
L , BSR=BSV
BRANCH BRANCH
INDIRECT INDIRECT
POST-
INDEX NOTE:
283}:‘:” 2232& H All EA/BA address calculations involve 16-bit operands and bit 0 of the fullword
ADDR+(X) ADDR indirect address pointer is included in these address calculations.

The results of indexed mode RS operations normally replace the first operand
except for store operations where the first operand replaces the second operand.
The second operand is unaltered for nonstore operations, and the first operand is
unaltered for store operations.

BRANCH ADDR
MsB

EXPAND BRANCH EXPAND BRANCH
ADDR USING ADDR USING
000 ! BSR

-
&

| 29 Expanded Addressing

"~ The addressing philosophy accommodates 64K halfword addresses since a full 16-bit

address is provided. Extending the addressing range beyond 64K halfword locations
2-15

up to 512K halfuword locations is provided by utilizing PSW bits and Data Sector
Extension (DSE) registers.

Expanding to 19 bits is achieved by replacing the high-order bit of a 16-bit address
with 4 bits, as shown in Figure 2-18. Data operand addresses are extended to 19
bits with a 4-bit Data Sector Register (DSR), a DSE, a BSR, or an implied DSR of
zero. When the high-order bit of a 16-bit data address is 1, a 4-bit DSR (PSW bits
28 through 31) is selected to replace the high-order bit. (Note: IC relative data
operand addressing would use BSR instead.) When the high-order bit of a 16-bit data
register is 0 and a base register is used to determine the address, the 4-bit DSE
for that base register is selected to replace the higher order bit. When the high
order bit of a 16-bit data address is a 0, and no base register is used, an implied
DSR containing 0000 is selected. Note that indirect addressing locates the indirect
address pointer as if the pointer were a data operand. Second stage expansion of
the indirect address pointer uses an implied DSR of zero if the high order bit of
the 16-bit address is 0 and no base register is used. If the high-order bit of the
16-bit address is 0, and a base register is used, then the 4-bit DSE for that base
register is selected to replace the high-order bit. Branch addresses are also
extended to 19 bits. When the high-order bit of a 16-bit branch address is a 1, a
4-bit Branch Sector Register (BSR-PSW bits 24 through 27) is selected to replace the
high-order bit. When the high-order bit is a 0, an implied BSR containing 0000 is
selected.

START
16-Bit Operand Address START
XYYYYYYYYYYYYYYY
16-Bit Branch Address
-04,/1\\‘-1 XYYYYYYYYYYYYYYY
X — DSR(orBSR)
[zzzz+<pPsw 2831} =0 =1
X BSR
80 e YES [zzzz<0s00] [zzzz<=Psw 2427]
l .]
“ \ 4 Expanded 19-Bit Branch Address
| zzzz + o000 | | 2zzzz<oDsEbese | ZZZZYYYYYYYYYYYYYYY
Expanded 19-Bit EA Branch Addressing Expansion
ZZZZYYYYYYYVYYYYYYY

Data Operand Addressing Expansion

Figure 2-18. Expanded Addressing

2-16

e

C

T
“/ ™
; \

s

T
y N

T

st N
4 b

Pictorially, main storage can be visualized as follows:

BA_ =0
or EA,=0 EA_=0 EA_ =0
EA_=0 ‘ 2 2
o DSEBO,1,2 DSEBO, 1,2 DSE B0,1,2
No Base
Reg - -
BA =1 EA =1
PSA
Operating Probiem Problem Problem Problem PROBLEM
System & Data Instruction Data Data DATA
Common Data Area Area Area Area AREA
Pool
0 32K BSR DSR 512K

PSW 24-27 PSW 28-31

This permits efficient communication from the problem program to the operating
system, the preferred storage area, (PSA) or a common data area.

It should be cautioned that instruction address incrementing or address calculations

"used to form the EA are performed on the low 16 bits only, and will not alter the

BSR, DSR, or DSE. The BSR or DSR may be altered only via a PSW swap, special
instruction operations (SVC, LPS) or by use of the indirect address pointer
described in this section. The DSE registers are loaded by the LXA and LDM
instructions.

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations
to be performed. This information resides in main storage and addressable registers
and may be operated on as data. Instruction execution cantrol is as defined under
the section on Machine Status anc: Goneral System Operation. Insert Storage Protect
Bits, Load Program Status, Internal Control and Set System Mask instructions are
privileged instructions and can only be executed in the Supervisor State. The
Program Status Word determines the current state of the CPU and the Supervisor Call
instruction can be used by the problem program to enter Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storage protection feature prevents modification of specific main storage
locations. Any location which ceculd, for example, contain constant data or program
instructions can be selectively protected from Store operations without restricting
the use of other areas. Traps on store operations to specific data words can be
inserted during prougram checkout. A privileged instruction, Insert Storage Protect
Bits, is provided to set/reset the protection bits associated with each halfuword of

2-17

main storage. Attempting to store data in a protected location will result in a.
program interrupt. In this case, the store operation does not occur.

2.4.1 Instruction Monitor Feature

The storage rrotection bits described can also be used to flag an inadvertent
attempt to execute, as instructions, data stored in unprotected areas. The feature
will ensure that no program will continue to execute data as program instructions.
An attempt to execute an instruction word which is unprotected will result in an
interrupt if FSW bit 34 is a one. The feature can be masked by a System Mask Bit
(bit 36 of the PSW). During program checkout, this feature permits use of special
software to aid debugging. '

An instructioy Monitor difference is the state the effective address is left in
following the interrupt handling. In the AP-101B, the Instruction Counter is
incremented to point to the next instruction to be executed. The AP-101S Instruction
Counter is not incremented and is left pointing to the offending instruction.

2.5 MACHINE STATUS

System status can be altered by the occurrence of interrupts and by the program. A
doubleword register within the CPU contains a program status word (PSW) and is the
focal point for CPU and system status eonditions.

2.5.1 Program Status Word

The program status word (PSW), contains the basic information required for proper
program execution. The 64-bit PSW includes the next instruction address, the
current condition code, the carry and overflow indicators, the system mask for
interrupts, and other fields significant to CPU operations. In general, the PSW is
used to control instruction sequencing and to hold and indicate the status of the
system in relation to the program currently being executed. The active or
controlling PSW is called the "current PSW". By storing the current PSW during an
interruption, the status of the CPU can be preserved for subsequent use. By loading
a new PSW or part of a PSW, the state of the CPU can be initialized or changed.
Figure 2-19 shows the PSW format.

2-18

CIOfF E
Instruction Address C CiRrR{VioO \ uls BSR DSR
bl A decdoat folegod godsy 4 1 MpoyMIMl b 1 1 b1
0 15 16 17 18 13 20 21 22 23 24 27 28 31
\\\\\ R P
System Mask NEA—-HighJSimMiwgl/ Interrupt Code
NN NN SL L0
32 : 39 40 43 44 45 46 47 48 63
0-15 Next Instruction Address 36 External Interrupt 1 Mask
16-17 Condition Code 37 External Interrupt 2 Mask System*
18 Carry Indicator 38 External Interrupt 3 Mask Mask
19 Overflow Indicator 39 External Interrupt 4 Mask
20 Fixed-Point Arithmetic Overflow Mask * 4043 Reserved for SVC High Order EA Bits
21 Reserved 44 Register Set (GR set 0 or 1)
22 Floating Point Exponent Underflow Mask* 45 Machine Check Mask*
23 Significance Mask * 46 Wait State Bit (Wait/Process)***
24-27 Branch Sector Register . 47 Problem/Supervisor State Control Bit* *
28-31 Data Sector Register 4863 Interrupt Code for Program Check, Machine
32 Counter 1 Mask Check, and Special External Interrupts, or
33 Counter 2 Mask System* 16 Bit Operand PEA for SVC Instruction
34 Instruction Monitor Mask Mask -
35 External Interrupt O Mask

*Mask bit = 0, interrupt inhibited
=1, interrupt allowed
**0 = supervisor state
1 = problem state
***0 = process state
1 = wait state

Figure 2-19. PSW Fields

The overall status of the CPU is preserved in the current PSW and the contents of
the general registers. The PSW is automatically retained upon taking an interrupt.
It is the programmer's responsibility to preserve the contents of the general

registers when necessary.
Certain other conditions that contribute to an overall system Status situation are

not automatically preserved when a CPU is interrupted. There conditions involve
additional units and include the dynamic state of all other interrupts, the state of

real time counters, and I/0 system status.

Masking is accomplished by setting the appropriate PSW bit to zZero.

2.5.1.1 PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

2-19

Instruction Address - Bits 0 through 15 and 24 through 27 of the PSW
contain the information to determine the address of the next instruction
to be executed. The machine architecture makes provision to address
262,144 fullwords, and the AP-101S space shuttle hardware implementation
provides full addressing capability.

PU Status

(s-d
it

Use

16, 17 Condition code for certain arithmetic, logical
and I/0 instructions

18 Carry status bit indicator

19 Overflow status bit indicator (overflow can
be reset by testing or by loading the PSW)

20 Fixed Point Arithmetic Overflow Mask
21‘ Reserved

22 Floating Point Exponent Underflow Mask
23 Significance Mask

Branch Sector Register - Bits 24 through 27 replace the high-order bit of
a branch address when that bit is a 1. Otherwise, an implied sector
register of 0000 replaces the high-order bit.

Data Sector Register - Bits 28 through 31 replace the high-order bit of a
data address when that bit is a 1. See "Expanded Addressing™ for details
when bit 0 is a zero.

Svystem Mask = Bits 32 through 39 are mask bits. The first two bits of the
System Mask are normally assigned to the two counters and the third to the
instruction Monitor Feature. The remaining five masks include I/0 end
conditions, other application dependent items such as a manual interrupt
key, and timer overflow conditions. The instruction SET SYSTEM MASK is
provided for modifying this field.

EA-High = For an SVC instruction, the 4-bit extension to make the 19-bit
effective address is saved in the old PSW bits 40-43. :

Register Select Field - The register select field, bit 44, controls either
of two sets of general registers in current use. When this bit is a zero,
then register set 0 is used; when this bit is one, then register set 1l is
used. The set of general registers in current use can be selected when a
new PSW is loaded. This can result from the execution of the PSW load
instruction or from an interrupt.

Machine Check Mask = Bit 45 is the mask bit which is used to inhibit
machine check interrupts (see Figure 2-20). When this bit is a zero, then
machine check interrupts detected by the CPU are inhibited.

2-20

ANOMALY: When one of these interrupts is taken, the condition code (CC) in the OLD PSW will be set to
a binary 10 and the carry and overflow bits in the OLD PSW will be cleared.

ANOMALY: A masked DMA store protect intermupt will set the condition code (CC) to a binary 10 and
clear the carry and overflow bits. This can result in GPC operation if an { ion tries to utilize
the CC, carry bit or overflow bit before they are set by another instruction. Additionally, a masked DMA store
Protect interrupt clears any fixed poim overflow, flosting point underflow, and floating point overflow
inxermm.mlmmumammmmihmaDMAmummmnup(mnm
an instruction that causes one of these arithmetic interrupts.

Internpt New Not PSwW Int. Interrupt Accept | CPU/IOP/AGE
Priority |Class | Old PSW |PSW Maskable | Mask | Pending | Code | Time Generated Interrupt
Bit
00 Power | 0010 — X — |- N/A ENDOP CPU Power Off ****** (Microcode Put Away)
01 Power | — 0004 X — |- N/A MCYCLE CPU Power On
02 Power | —~- 0014 X = e N/A MCYCLE CPU System Reset
03 Power | -— — — - |- N/A — — N/A 1o Shuttle ISA
co MC 0040**=# | 0044 - 45 No 0008 | MCYCLE CPU EA Fault
04 MC 0040°*=# | 0044 — 45 |No 0005 | MCYCLE CPU CPU Microstore Parity
05 MC 0040# 0044 —_— 45 [No 0006 | ENDOP CPU Intermupt Page Fault
35 MC 0040# 0044 — 45 |No 0002 | Forced ENDOP |IOP ° DMA Memory Muiti-bit Error
06 MC 0040t% | 0044 — 45 |No 0003 | Forced ENDOP | CPU CPU Memory Muiti-bit Error
10 MC |— _ —-— — |- -_ - —_— Spare
11 MC — — — — — — —_— Spare
12 MC 0040°**# | 0044 X — 0007 | MCYCLE CPU ENDOP Timeout
13 MC |— — - — — —-— - Spare
14 MC 0040***# | 0044 X -~ [No 0009 |MCYCLE CPU CPU Camnot Continue
15 MC - -— —_— — | _— -~ — Reserved
16 MC |-— _— X — |- — ENDOP AGE AGE Breakpoint (Tester Service)
30 MC |[-— - — — |- — - — N/A to Shuttle ISA
36 MC |~ — — — - —_— —_— —_— U Memory Error ***=*
37 MC |- — —-— — |- - — -_ EU Memory Error **=**
17 PE 0070 0074 — 34 |No N/A ENDOP CPU CPU Breakpoint (1 ion Monitor)
20 PE 0048 604C - 20 Note | 0004 | ENDOP CPU Fixed Point Overflow
21 PE 0048 004C X ~— |No 000B | Forced ENDOP | CPU Floating Point Overflow (Exponent)
22 PE 0048 004C — 22 |No 0009 | Forced ENDOP | CPU Floating Point Underflow
23 PE — — —-— — — —_ — Spare
C1,34 PE 0048 004C X No 0000 | MCYCLE CPU Iliegal Instruction, or 1/O Command
c2 PE 0048 004C Xmnne — |No 0001 | ENDOP CPU Privileged Instruction
fox] PE 0048 004C X No 000C | Forced ENDOP | CPU Divided by Zero (Fit. Pr)
C4 PE 0048 004C —_ 23 |No 0005 | ForcedENDOP | CPU -~ Significance
Cs PE 0048 004C X — |No 000A | ENDOP CPU Convert Overflow
31 PE 0048 004C X ~— |No 0002 | Forced ENDOP | CPU CPU Addr Spec 128K, GB Only
PO SC 0058 00sC X - |No (INST) | ENDOP CPU Supervisor Call
31 PE -— _— — —_— - — — —_ Spare
32 PE — —_ — —_ |- —_ — - N/A to Shuttle ISA
33 PE 0048# 004C X e R 0007 | ForcedENDOP | CPU Store Protect Violation
07 PE — _— — —_ = — —_ N/A to Shuttle ISA
4043 SYS |— —_ - —_ |- — —_— —_— N/A to Shuttle ISA
44 SYS |— - -_ —_ |- —_ —_ —_— Spare
45 SYS | 0060 0064 — 32 | Yes —_ ENDOP CPU Interval Timer No. 1
46 SYS | 0068 006C — 33 |Yes — ENDOP CPU Interval Timer No. 2
47 SYS |— — —_ — |- - — — N/A to Shuttle ISA
50 SYS | 0078 007C — 35 | Yes 0000 |ENDOP 1oP External 0 (IOP Voter, IOP Reg. A)
50 SYs 0078 007C — 35 Yes 0000 {ENDOP op External 0 (C/M ldle, IOP Reg. A)
50 SYS | 0078 007C — 35 |Yes 0000 | ENDOP op External 0 (IOP ROS Parity, IOP Reg. A)
50 8YS | 0078 007C — 35 |Yes 0000 | ENDOP (o) External 0 (TOP Fauit, IOP Reg. A)
50 | SYS | 0078 007C — 35 |Yes 0000 | ENDOP op Extermal 0 (Watchdog Timer, IOP Reg. A)
51 SYS | 0080 0084 — 36 | Yes 0000 | ENDOP 0P Ext 1 IOP Data Flow Error Encoded (see Read Interrupt Reg. B
in Appendix I)
51 SYS 0080 0084 — 36 Yes 0000 | ENDOP : op Ext 1 Q Overflow (IOP Reg. B)
51 SYS | 0080 0084 — 36 | Yes 0000 | ENDOP op Ext 1 DMA Timeout (IOP Reg. B)
51 SYS | 0080# 0084 — 36 |Yes 0004 - | ENDOP CPU Ext 1 DMA Store Protect Violation##
53 SYS | 0088 008C —_ 37 |Yes — ENDOP op Ext 2 10P Programmed Interrupts (1-12)
54 SYS | 0090 0094 — 38 | Yes — ENDOP 0P Spare Extemal 3
55 SYS | 0098 009C — 39 | Yes —-— ENDOP (0} Spare External 4
56 SYS — —_ |- — — Spare
52 SYS | 0080 0084 - 36 | Yes 0006 | ENDOP AGE Shuttle AGE Internpt
* CPU must not be in the hait mode

** CPU must be in halt mode

*** PSW can vary, maybe updated PC or unupdated PC
=¢ Only occurs when in problem state
see** Valid only during

se=*=s If power off during long instruction, IC may be
backed up

in Diagn

(INST) 16 Bit Operand PEA of SVC Instruction
Note 1 Status held active in PSW 19
1 See note in Paragraph 2.5.2.1 on page 2-25.

Figure 2-20. Interrupt Structure and Priority

2-21

10.

11.

Wait State - Bit 46 determines the wait or processing (run) states. When
this bit is a zero, the CPU is in the processing state. When this bit is
a one, the CPU is in the Wait State.

Problem/Supervisor = Bit 47 determines the problem or supervisor states.
When this bit is a zero, the CPU is in the supervisor state and privileged
instructions can be executed. When this bit is a one, the CPU is in the
problem state and attempts to execute privileged instructions are
inhibited resulting in an interrupt.

Bits 648 <through 63 are reserved for the interrupt code. Program and
machine check interrupt conditions and associated interrupt codes are
given in Figure 2-20.

2.5.2 Interrupts

4.

Power - This interrupt occurs when primary power is removed from the
system for any reason. The current PSW, the general register set 1 and 2,
the floating point registers, counters 1 and 2, and the current DSEs are
put away (stored) in main storage for future reference. Figure 2-21 shous
the PSA assignments including putaway. When primary pouwer is restored,
operation is initiated with the "power on PSW" (if the power-up mode is
defined as Run). This power-up condition is explained in General System
Operation.

Machine Check - When not masked, this interrupt class occurs following the
detection of a malfunction. The current instruction is then terminated
and the interrupt taken. A diagnostic procedure may then be initiated.
When masked the interrupt does not remain pending.

Program - This class of interrupt arises from improper specification or
use of instructions or data. Bits 20, 22, and 23 (l=interrupt enabled,
O=interrupt disabled) in the PSW are provided to permit masking program
interrupts due to arithmetic exceptions such as fixed point overflow. Bit
34 in the PSW is provided to permit masking the instruction monitor
interrupt. When masked, program interrupts do not remain pending. When
jnvalid instruction or address detection is provided, the resulting
program interrupts cannot be masked.

Supervisor Call (SVC) = This interrupt results from the execution of the
SVC instruction. The four MSBs of the 19-bit extended EA are placed into
the EA-high field (bits 40-43) of the old PSW, and the nonextended 16-bit
EA is placed into the interrupt code (bits 48-63) of the old PSW. This
instruction can be used to switch from the problem to the supervisor
state.

2-22

0 1 2 3

4 5 6 7 8 9 A B

C D E F

000

i&—Used for Self-Tests—

&—— Power On —>

€&—— Available For S

oftware Use ——————

001

Power Off
Interrupt PSW

e

System Reset

PSW ———€——— Available For S

oftware Use ————3

Ea

Available For Software Use

002

Reserved For Future Hardware Growth

003

004

Machine Checks
le—— Old PSW——3j€¢—— New PSW —>

Program
) &—— OIld PSW

Checks
New PSW —»

005

l¢—— Reserved For Future

Supervisor

Hardware Growth —> Old PSW

———

Call (S§VC)
New PSW —»

006

Program Counter 1
le—— New PSW ——>

&—— Old PSW:

Program

€&—— OIld PSW

Counter 2
New PSW —>»

007

Instruct
€—— Old PSW

on Monitor

External

New PSW ——»€—— Old PSW——>

Interrupt 0
New PSW —>

008

€«—— 0ld PSW——>

External Interrupt 1

Externa

Old PSW—-->

New PSW ——¢——

Interrupt 2
New PSW —3

Externa

Interrupt 3

Externa

Interrupt 4

009) ¢e—— Old PSW——3t€—— New PSW ——pt€&—— Old PSW: New PSW —3»
00A€——Reserved * BCE 25 (Page [-17) P€—Res. *—3
00B Cl;lr.ll CI,:_‘ZZ Available For Software Use
00C Put-Away Locations for General Register Set 0
00D Put-Away Locations for General Register Set 1
00E Put-Away Locations for the Floating Point Register Set
00F j&———— Micro Working Registers - DSEs
010 fp s CPt:.t-le(;,:yJRes.‘ j¢——— Used For Hardware Fault Detection
011 & Used For Hardware Fault Detection
012 Used For Hardware Fault Detection
013 & Used For Hardware Fault Detection
* Reserved For Future Hardware Growth
DSE PUTAWAY FORMAT

ADDR REGISTER SET 0 REGISTER SET 1

00F8 | RESV | DSEO | RESV | DSE1 | RESV | DSEO | RESV | DSE1

00FA | RESV | DSE2 | RESV | DSE3 | RESV | DSE2 | RESV | DSE3

00FC | RESV | DSE4 | RESV | DSE5 | RESV | DSE4 | RESV | DSES

O00OFE | RESV | DSE6 | RESV | DSE7 | RESV | DSE6 | RESV | DSE7

BITS |0 314 7|18 11{12 15(16 19|20 23|24 27|28 31

Figure 2-21. Preferred Storage Area Assignments

2-23

5. System - This class of interrupt results from program counter timeouts and
conditions outside the CPU. Provision is made for seven interrupt levels
Wwithin this class, and each is provided with a unique set of PSWs and a
mask bit. Two are program counters and five are external interrupts.

Any number of the five external interrupt conditions may be grouped into a
single level by the external equipment. In the event of simultaneous
external interrupt conditions, the lowest numbered (bit within the system
mask field in the PSW) interrupt is taken first. These interrupts remain

pending when masked.

The two program interval timers are each 32 bits wide and decrement. The lower 16
bits (least significant halfword) of each counter resides in 16-bit binary harduare
counters that count dowun by one every microsecond. The high 16 bits (most
significant halfword) of each counter resides in main store. The high halfword lies
in main store location 80B0 for counter 1 and main store location 00B1 for counter
2. When the low halfword (in the hardware counter) passes from 0000 (hex) to FFFF
(hex) an interrupt occurs which can cause the high halfword in main store (via
microcode) to be decremented by one. This interrupt is transparent to the
programmer until the high halfuord in main store equals 0000 (hex). When such an
interrupt occurs, the high halfword is decremented to FFFF (hex) and a PSW swap
occurs, telling the programmer that the counter has timed out. Note that if the
interrupt is masked the high halfword will not be decremented by the microcode. The
low halfword continues to count down. The interrupt although, remains pending and
if unmasked within 65 ms, the upper halfuword will be decremented without a loss of a

count.

The counters can be loaded and read by the Internal Control instruction, described
in Section 10. ’

2.5.2.1 Interrupt Handling

The machine check, program, SVC, and each system interrupt have two related PSUs
called "old™ and "new™ in unique main store locations. This zone of main store is
referred to as a preferred storage area (PSA), which is illustrated in Figure 2-21.

In all cases, an interruption involves merely storing the current PSW in its old
position and making the PSW at the new position the current PSW. The old PSW holds
all the necessary status information in the szvstem existing at time of interruption.
If, at the conclusion of the interruption routine, there is an instruction to make
the old PSW the current PSW, the system is restored to the state prior to the
interruption, and the interrupted routine continues. This means the programmer must
clear the fixed point overflow indicator before being reloaded. Note that it is
possible to switch to the alternate saet of general registers when the PSW swap takes
place. This set of registers is defined by bit 44 in the new PSW.

Interruptions can only be taken when the CPU is interruptible for a given source.
The system mask, machine check mask bit, floating point exponent underflow mask, the
significance mask; and the fixed point overflow mask bits in the PSW dafina the
interruptible state of the CPU with respect to those sources. When masked, system
interrupts remain pending while machine check and program interrupts are ignored.

2-24

The power transient, certain Program interrupts, and the SVC interrupt cannot be
masked.

Note: The pipeline is the driver for CPU multibit errors (IU and EA). Therefore,
the machine check old PSW for CPU multibit error will reflect the updated PC - not
the address of the multibit error. The following are ways in which a CPU multibit
error may be encountered:

1. The instruction unit (IU) prefetching instructions (up to 23 halfwords
ahead of the PC)

2. The effective address unit (EA) prefetching data (anywhere in memory)
3. The EA prefetching a branch target address (anywhere in memory) .

In the event of this type of error, the error detection and correction (EDAC)
address register may be read for determination of the actual multibit error address.

2.5.2.2 Interrupt Priority

Figure 2-20 presents the repertoire of interrupts with approximate priority levels.
Individual interrupts are listed in order by classification, rather than by
priority. The priority of each interrupt is represented by a two-digit code, which
is interpreted as follows:

First Digit - represents the capture latch number (lower-numbered capture
latches are examined first) or, if alphabetic, the fact that the interrupt is
generated by the CPU - either a Command Interrupt (C), or a Supervisor Call PSW
swap (P).

Second Digit - represents the priority of the interrupt within a grouping
(hardware or "other").

Conceptually, the order of processing (in the case of interrupts received
simultaneously) is as follows:

1. Group 0 Interrupts - These are the highest priority - the Power/Machine
Check type interrupts. The Power, System Reset, and IPL interrupts clear
all pending interrupts - the remaining Group 0 interrupts do not. See
Page 2-21 for interrupt structure and priority.

2. Command Interrupts - These are usually interrupts which demand direct
communication from the CPU to the Interrupt Page Processor. Often, they
are included within a CPU microcode procedure. Action taken by the CPU is
usually to request the interrupt and then loop at one microword, waiting
for the Interrupt Page to reset the Control Store Data Register, thereby
forcing a branch to zero.

3. Group 1, 2, er 3 Interrupts - These interrupts differ from the following
two groups in that the harduware freezes the CPU microcode at the next

.ENDOP when one of them is detected.

[Group & or 5 Interrupts - These interrupts are the only types that are
held pending until they are unmasked with no additional higher-priority
interrupts present. They are only accepted at ENDOP time and generally
cause only slight CPU Processing delays if they are masked OFF.

2=-25

When more than one unmasked interrupt requests service, the current (old) PSW is
stored into and the new PSW is fetched from two PSA locations assigned to the first
interrupt to be processed. Then, the same procedure is followed using the PSA
locations of the second interrupt, with the exception that the "old" PSW is the
former new PSW as fetched for the first interrupt. This procedure of "passing” the
PSW is continued until the last interrupt request 1is acknowledged. Then,
instruction execution is commenced using the PSW last fetched. The order of
execution of the interrupt service routines is, consequently, the reverse of the
order in which the string of "new™ PSWs were fetched. Machine Check and Power
Transient interruptions supersede all other interrupts when they are encountered.

The priority scheme as outlined above is used to resolve race conditions due to
multiple interrupt conditions. However, since in the case of most normal interrupts
(those expected to be encountered during the execution -of typical application
software) separate mask bits and PSW locations are provided for each external
source, the priority of handling these interrupts is further affected by the
contents of the PSWs actually fetched during the interrupt service overhead. That
is, as each PSW swap occurs, further action with regard to System (and Machine
Check) interrupts is determined by the mask fields encountered within the new PSW.

Two major exceptions to the above process involve the Instruction Monitor Interrupt
and Supervisor Call. Instruction Monitor conditions are monitored by hardware and
cause no processing delays if masked OFF, since the Interrupt Page will not even be
notified of the condition in that event. It could be argued that Supervisor Call
might not be considered an interrupt at all, since it is not an unexpected condition
and is appropriately handled by the CPU microcode, but it is included in the list
because its execution necessitates a PSW SWAP and, therefore, cooperation by the
Interrupt Page processor in that portion of the instruction implementation.

2.5.2.3 Interrupt Masking

Individual masking of several of the interrupt types is possible. MWhen masked off,
the interruption is either ignored or remains pending for later execution. The
masking capability for each of the interrupt types is as follous:

1. Power Transient - Cannot be masked off.
2. Machine Check - Can be masked off by setting the machine check mask bit 45

in the PSW equal to zero. When masked off, normal instruction sequencing
occurs, and the interrupts do not remain pending.

3. Program - Three of the 1l program interrupts are capable of being masked
off; fixed point arithmetic overflow, exponent underflow, and
significance, by setting the appropriate mask bits in the PSW equal to
zero. When masked off, these interruptions do not remain pending. Note
that if a PSW with both Fixed Point Overflow Indicator and mask (bits 19
and 20) set is used, the interrupt will occur.

G, Supervisor Call - Cannot be masked off.

5. System - Each level of external interrupts can individually be masked off
by setting the corresponding system mask bit in the PSW equal to zero.
Interrupts that are masked remain pending.

2.5.2.4 Preferred Storage)Area (PSA) Assignments

The contents of the PSA are shown in Figure 2-21 with the main store address

.expressed in hexadecimal notation. The following PSA locations must not be store

protected:

1. Power off interrupt PSW

2. All old PSW locations

3. BCE 25 processor storage (00A4 - 00AS5)

4, Counter 1 and 2, high halfword locations 00BO and 00B1
5. Putaway locations (00CO through 0102)

6. Diagnostics (104-13F).
2.5.3 General System Operation

The various states entered by the computer and their relationship to the basic
operator controls are shown in Figure 2-22. The basic controls provided for the
operator are power-on, initial program load (IPL) and the system reset key. Among
the many controls available, these functions have special significance because of
their relationship to an unconditional system reset sequence. These functions each
produce a system reset sequence which applies to the computer, I/0 channels, and
peripherals. Further operation within the system differs, however, as explained in

the following sections.

e Power-On
® System Reset
e IPL

|

System Reset

Sequence
(1PL) / l \ (Power-On Run Mode!

5

(AGE Stop)
Execute IPL
Sequence
L (System Reset)
Use
Power-On
Stop Key Continue Key PSW

Use System Load PSW Key 1

T

(Instruction
or Interrupt)
(Interrupt) @
-
s
7~
-/

o

— e e ot o o] - o —

* ~ | (Wait
~

—_——————— ~—— — — — | State PSW

Figure 2-22. CPU Mode Switching

2.5.3.1 Power-0n

One of two modes of operation must be specified for the system at power-on. The
first results in a system reset followed by the computer entering the stop state.
In this state, instructions are not processed, interrupts are not accepted, and
system timers are not updated. This system is termed "manual"™ because further
operation must be determined by the operator.

The second mode at power-on enters the run state after the system reset is complete.
The instruction stream is initiated and interrupts are processed. The computer can
be removed from the run state by certain instructions, interruptions, and by manual
intervention.

2.5.3.2 System Reset

The system reset function resets the computer system to a known state such that
processing can be initiated without the presence of machine checks, except for those
caused by subsequent machine malfunctions. The system reset function causes the
following: -

2-28

° CPU pending interrupts are reset

® Internal timers are reset to all ones (1l's)
° Status registers are reset
° DSE registers are set to zero.

2.5.3.3 1IPL

The use of the IPL function is independent of the prior state of the system. IPL
first causes a system reset function and the writing of C6C6 (hex) by the CPU to all
memory locations above and including address 20000 Hex with memory store protected.
I0P microcode at IPL writes C9FB (hex) to all locations from 0 to 1FFFF Hex, with
memory store protected.

2.5.4 DOperating State

The run state and wait state shown in Figure 2-22 are collectively termed the
operating state for the system. When the computer is in the run state, instructions
are executed in the normal manner. An instruction may be encountered or an
interrupt processed that forces the computer into the wait state. The computer does
not execute instructions in the wait state, but it is interruptible when not masked.
System timers are updated and input/output operations continue in the wait state.

The wait state may also be entered after completing IPL or by special operating
intervention via the stop state (dotted lines on Figure 2-22). This action is the
result of the wait bit being set in the controlling PSUW.

2.5.4.1 Program State Alternatives

Certain other states exist within the CPU that contribute to its overall status.
These states are directly related to program operation and are:

1. Maskad or Interruptible State - The computer may be masked for certain
interrupt conditions at any given time. These conditions generally remain-
peixding within the system until the masked condition is changed by the
Fraogram. Certain error conditions cannot be masked off, while other error
coaditions, such as program checks, are ignored when specifically masked.

2. Sucervisor or Problem State - In the supervisor state, all instructions
are valid. In the problem state, I/0 and certain other instructions are
invalid, and their use produces an error interrupt. This state is

coatrolled by bit 47 in the PSW. The SVC instruction is provided to
switch from problem to supervisor state. The LOAD PSW instruction is used

2-29

tb switch from supervisor to problem state.

3. General Register Selection - Bit 44 is the current PSW and selects the set
of general registers in current use.

2.5.5 Architectural Growth

Throughout this Principles of Operation manual, architecture conventions are defined
or facilities are marked "reserved" to retain flexibility for future implementations
and extensions. The computer operates in conformance to this manual when
architecture definitions are followed consistently. Hardware operation, when these
rules are violated, is not defined and is properly outside the scope of this manual
to retain flexibility of implementation. "Programmer discovered™ operations that
violate or go beyond the definitions described herein, but produce "useful™
functions, should not be used and should be considered "reserved", because the
results obtained may vary from computer to computer, or even release levels for one
computer, depending upon options selected or the design release level to which the
hardware is manufactured.

2-30

3.0 CPU I/0

The transfer of information with input/output occurs in one of two modes:
1. Direct Memory Access (IOP initiated and controlled)

2. Frogram Controlled (CPU initiated and controlled).

3.1 DIRECT MEMORY ACCESS OPERATION

Direct Memory Access (DMA) operations are IOP initiated. Although the resulting
cvcle steal menory access preempts CPU accessas, thereby slowing program execution,
DMA operations are not under program control and are transparent to the functional
operation of the CPU. DMA operations can occur between CPU memory cycles during
instruction execution, unless the instruction specifies that DMAs are held off
during execution of that instruction. ’ '

3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION

Program-Controlled I/0 operations transfer onae fullword between a CPU general
register and an IOP Subsystem. The operation is initiated by executing the
privileged instruction "PC Input/Output™. A control word (CW), in a second general
register specified by the instruction, defines the specific I/0 operation and the
specific I0P Subsystem associated with the operation.

3.3 PROGRAM-CONTROLLED I/0 INSTRUCTION

Op R1 : R2
Y1Tjofritg J ot jrgrjrgoltl oy g
0 4 5 7 8 1112 13 15

Mnemonic Format
PC R1. R2

DESCRIPTION:

The Input/Output instruction transfers a fullword to or from the general register
specified by Rl. Direct I/0 operations are defined by a control word (CW) contained
in the general register specified by R2. The CW format is shown belowu:

Command (M)

LI L b b

Of O m

3-1

ID: For an input operation, bit 0 must be coded as 0. For an output
operation, this bit must be coded as 1.

Command (M): Bits 1-31 specify the particular operation to be performed. In
executing an input operation, the channel (1) transmits the 32-bit CW
to the IOP Subsystem; and (2) subsequently loads 32 bits of
information, transmitted from the IOP Subsystem, into general register
R1. In executing an output operation, the channel (1) ‘transmits the
CW to the IOP Subsystem, and (2) subsequently transmits bits 0-31 of
general register R1 to the IOP Subsystem. The specific definition of
the command bits is described in Appendix I, Program Controlled Inputs
and Outputs.

Each control unit connected to the channel is required to accept the CW, decode the
control unit and device address, and perform the input or output operation defined
by the command field.

If the 1/0 handshaking operation does not complete within 9.5 microseconds for CW
and DATA 0OUT transfers or 6.5 microseconds <for DATA 1IN transfers, the
Program-Controlled instruction will terminate and the condition code will be set to
reflect the timeout.

RESULTING CONDITION CODE:

00 Operation successful
01 Interface timeout error; operation not successful
INDICATORS:

The overflow and carry indicators are not changed by this instruction.
Program Interrupt - Privileged instruction.
PROGRAMMING NOTE:

This isia privileged instruction and can only be executed when the CPU is in the
supervisor state.

3-2

4.0 FIXED POINT ARITHMETIC

For all of the following sections, [d] [#] indicates that the use of indirect
addressing and/or autoindexing is optional. For .example, M specifies direct
addressing without autoindexing, while M2 specifies direct addressing with
autoindexing.

The arithmetic instruction set performs binary arithmetic on fixed point, fractional
operands. Fullword operands are signed and 32 bits long. Negative quantities are
represented in twos complement form.

Halfword operands are 16 bits long. Within the CPU, a halfword operand from storage
is developed into a fullword operand prior to instruction execution. This is done
by using the contents of the halfuord second operand location as the most
significant 16 operand bits and generating 16 low-order zeros. This result is the
second operand.

4.1 ADD

Op R1 R2
0 0|0|0|0 | | 111|110 0 | |
0 4 5 7 8 11 1213 15
Mnemonic Format
AR R1, R2
Op R1 Disp*® B2 °Displacements of the form 111XXX are not valid.
01010100} | | L 11 1 |
0 4 5 7 8 13 14 15
Mnemonic Format
A R1,D2 (B2)
A
Op R1 M| 82 Address Specification
0Jjojojojof | | J1y1y1y1]o0 | Lttt brr
0 4 5 7 8 11 1213 14 15 16 3
AM Mnemonic Format
Extended: 0 A R1, D2 (B2) Disp
| | N I O O |
Indexed: 1 A[@ [#]R1,D2 (X2, B2) X Ll Disp
[I O O R
DESCRIPTION:

The fullword second operand is added to the contents of general register R1. The
result replaces the contents of general register Rl. The second operand is not
changed.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2731, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.2 ADD HALFWORD

Op R1 Disp® 82 “Displacements of the form
110101010f | | L1 L 111X XX are not valid.
0 -4 5 7 8 1314 15
Mnemonic Format
AH R1, 02 (B2)
Op R1 a B2 Address Specification
1jo0jojojo] | | J1j1j1]1]jo] I T O O O O I
0 4 s 7 8 11121314 1516 31
AM Mnemonic Format ;
— e Disp
Sxtanded: 0 M R1.D2 (B9 L1 I O A A
Indexed: 1 AH (@] [#] R1,D2(X2 B2) X IA, Disp
| I O I |

DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This fullword operand is then added to the contents of general
register Rl. The result replaces the contents of general register R1. The second
operand is not changed.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one, if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2-3!, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.3 ADD HALFWORD IMMEDIATE

Op oPX R2 Immediate Data
1]0j1jrjojojojojrj1y1jojof | | LAttty
0 4 5 7 8 11 12 13 15 16 31
Mnemonic Format
AHI R2, Data
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The resulting fullword operand is then added to the contents of general
register R2. The result replaces the contents of general register R2. The
immediate operand is not changed.

RESULTING CTONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2731, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry

out of the high-order bit position of the general register.
PROGRAM INTERRUPTS:

Fixed point overflow

4-4

4.4 ADD TO STORAGE

A
Op R1 ml B2 Address Specification
ofjojojojof | | [1]1]1]1]1 | N I T I O O
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format
Extended: 0 AST R1, D02 (B2) Disp
. | | I T O O O |
Indexed: 1 AST (@] [#] R1,D2(X2,B2) | Disp
R N N
DESCRIPTION:
The contents of general register Rl is added to the fullword second operand. The
result replaces the contants of the second operand location. The first operand is

not changed.
RESULTING CUNDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location. That is, greater than 1-2-3!, or less
than or = -1. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:
Fixed point overflow
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Hith any memary locations that might be DMA'd into.

4-5

4.5 COMPARE

Op R1 R2
0jojoj1q0f | | fijrqp1jofol | |
0 4 5 7 8 11 1213 15
Mnemonic Format
CR R1, R2
Op A1 Disp* 82 *Displacements of the form 111X XX are not valid.
o0jojoj 1o} | | | 1 111 |
0 4 5 7 8 1314 15
Mnemonic Format
(o4 R1, D2 (B2)
A
Op R1 m| 82 . Address Specification
010101140} -y J1j1y1y140] I I T T I I O I O
0 4 5 7 8 11 12 131415 16 31
AM Mnemonic Format .
Extended: 0 C R1,D2(B2 Disp
L T T S O I
| .
Indexed: 1 cl@] [#]R1, D2 (X2, B2) X INK Disp
| 1 1 T T 1 I
DESCRIPTION:

The fullword
register R1.

second operand is algebraically compared with the contents of general
The contents of general register Rl and main storage are not changed

at the end of instruction execution.

RESULTING CONDITION CODE:

00 The

11 The

01 The
INDICATORS:

The overflow

contents of general register Rl equals the second operand
contents of general register Rl are less than the second operand
contents of general register Rl are greater than the second operand

and carry indicators are not changed by this instruction.

6-6

4.6 COMPARE BETWEEN LIMITS

Op R1 R2
oJojJojfojrj | | frjafrjof] | |
0 4 5 7 8 11 12 13 15

Mnemonic Format
CBL R1,R2

DESCRIPTION:

A compare between limits instruction occurs. The condition code reflects the result
of the comparison.

(R1) Addr of Operand modifier

(R2) Addr of Limits modifier

The address of a 16-bit twos complement integer operand is contained in bits 0
through 15 of general register R1. The address of a fullword with the following
format containing the upper and lower limits is contained in bits 0 through 15 of
the general register R2:

Upper Limit Lower Limit

Lt bbbttt

0 15 16 31

These limits are 16-bit twos complement integers.

In bits 16 through 31 of general registers R1 and R2 are 1l6-bit twos complement
integer modifiers. After the addresses in bits 0 through 15 have been used to
locate the operands, each modifier is added to the most significant 16 bits of the
registers. The result replaces the most significant 16 bits. The modifier is not
changed, overflows and carry out of the most significant address bit are ignored.

RESULTING CONDITION CODE:

00 Within Limits: Lower Limit € Operand < Upper Limit
01 Above Upper Limit: Operand > Upper Limit
11 Below Lower Limit: Operand < Lower Limit

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

-7

4.7 COMPARE HALFWORD

Op R1 Disp* B2 *Displacements of the form
110904110) | | L1 | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
CH R1,02(82)
Op R1 S‘ 82 Address Specification
1j0jojrjo | 1 111111110 | | N N S I T O I A O
0 4 5 7 8 11 1213 14 15 16 31
ﬁ_l\/.i Mnemonic Format
Extended: O CH R1, D2 (B2) Disp
| 1 | S U O A O I I |
Indexed: 1 CH(@| [#] R1,D2(X2,82) x lial1 Dise
| [I O O O O |
DESCRIPTION:

The halfword second operand is first developed. into a fullword operand by appending
16 low-order =zeros. This fullword operand is then algebraically compared with the
contents of general register Rl1. The contents of the general register and main
storage are not changed at the end of instruction execution.

RESULTING CONDITION CODE:
00 The contents of general register Rl equals the developed fullword operand
11 The contents of general register Rl are less than the developed fullword
operand
01 The contents of general register Rl are greater than the developed fullword
operand
INDICATORS: The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fulluword operand participate in the
comparison. :

4-8

Vi %,

4.8 COMPARE HALFWORD IMMEDIATE

Op oPX R2 Immediate Data
1J0jtyrjojrjoqifrgry1yojol | | I O T I O O O
0 4 5 7 8 111213 15 16 3
Mnemonic Format
CHI R2, Data
DESCRIPTION:

Instruction bits 16 thougsh 31 are treated as immediate data. This halfword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeros. This fullword operand is then algebraically comparcd with the contents of
general register R2. The contents of the general register and main storage are not
changed at the end of instruction execution. '

RESULTING CONDITION CODE:

00 The contents of general register R2 equéls the developed fullword operand
11 The contents of general register R2 are less than the developed fullword
operand

01 The contents of general register R2 are greater than the developed fullword
operand :
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fullword operand participate in the
comparison. .

6.9 COMPARE IMMEDIATE WITH STORAGE

Op oPXx Disp* 82 Immediate Data
110117110 [1 1041 | 1111 | I I O I O O O R R R
0 4 5 7 8 13 14 15 16 ' 31
Mnemonic Format °Displacements of the form
cIsT D2 (B2), Data 111XXX are invalid.
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. This is algebraically
compared with the halfword main storage operand. Tha immeciate data and the
contents of main storage are not char gad at the end of this instruction. ’

RESULTING CONDITION CODE:
00 The immediate data equals the hélfword main storage operand
11 The immediate data is less than the halfword main storage operand
01 The immediate data is greater than the halfword main storage operand

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.10 DIVIDE

Op R1 R2
i I I RN RN)
0 4 5 7 8 11 12 13 15
Mnemonic Format
DR R1, R2
Op R1 Disp* B2 *Displacements of the form
011101011 | | | 1| | | | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic 125221
D R1,D2(B2)
Op R1 G B2 Address Specification
0 1jojop1] | J1y1y1q1jo | LU bttt
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format
Extended: 0 D R1, D2 (B2) Disp
|| [
Indexed: 1 D(@](#] R1,D2(X2 82 x || Disp
| 1 |Aa I I O O O |

DESCRIPTION:

The first operand, a 64-bit, signed twos complement dividend, is contained in the
general register pair Rl and (R1+1)mod8. The most significant portion is in R1.
When R1 indicates an odd general register, the first operand is developed by
appending 32 low-order =zeros to the contents of R1. The second operand is the
divisor.

The first operand is divided by the second operand. The unrounded quotient replaces
the contents of general register R1. The remainder is not developed. When Rl is
even, specifying an even/odd general register pair, the contents of (Rl + 1) mod 8
are indeterminant at the end of instruction execution. When R1 is odd, (R1 + 1) mod
8 is never changed. The second operand is not changed.

When the relative magnitude of dividend and divisor is such that the quotient cannot

be expressed as a 32-bit signed fraction, an overflow is generated. In this event,
the contents of both R1 (and Rl + 1 when Rl is even) are indeterminate upon

instruction termination.

RESULTING CONDITION CODE:

The code is not changed.

6-11

INDICATORS:

The overflow indicator is set to one when the <uotient cannot be represented, or
when division by zero is attempted. The dividenc is destroyed in these cases. 1If
the overflow indicator already contains a one, it is not changed. The carry
indication has no significance following execution and is indeterminate.

PROGRAM INTERRUPTS:

Fixed point overflow

£

.11 EXCHANGE UPPER AND LOWER HALFWORDS

Op R1 R2
ojojojojol | | Jrprpgofr] g |
0 4 5 7 8 11 12 13 15

Mnemonic Format
XuL R1, R2

DESCRIPTION:

The upper halfword of general register Rl is exchanged with the lower halfword of
general register R2. Bits 0 through 15 of general register Rl replace bits 16
through 31 of general register R2, while simultanerusly bits 16 through 31 of
general register R2 replace bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.12 INSERT ADDRESS LOW

Op R1 pkp' B2
1]1]1ojol | | L L1 11 |
0 4 B 7 8 ’ 1314 15
¢ Displacements of the form 111XXX are not valid.
Mnemonic Format
1AL R1, D2 (B2)
A
Op R1 M| B2 | Address Specification
Ldadolol L da]a]a | Lttt
0 4 5 7 8 11 121314 15 16 31
AM Displacement
0 Lttt e
16 ’ 31
|
X All Displacement
1 1 Lttt
16 31
AM Mnemonic Format
Extended: 0 1AL R1, D2 (B2)
Indexed: 1 IAL [@][#] R1,D2 (X2, B2)
DESCRIPTION:

A 16-bit effective address is developed in the normal manner utilizing halfword
index alignment, if specified. This address itself replaces the 16 low-order bits
of general register Rl. The 16 high-order bits of general register Rl are not
changed.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-14

4.13 INSERT HALFWORD LOW
A
R1 M| B2 Address Specification
1Jolololol | | |alslilih] I I O I L 11
0 4 5§ 7 8 1112 13 1415 16 31
AM Dispiacement
Y N S N N N I A S L1
16 31
|
X A |l Displacement
1 L | | | 11
16 31
AM Mnemonic Format
Extended: 0 IHL R1, D2 (B2)
Indexed: 1 IHL (@] [#]R1, D2 (X2, B2)
DESCRIPTION:

The halfword second operand replaces the contents
of general register Rl are

R1. Bits 0-15
changed.

RESULTING CONDITION CODE:
The codé is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

not changed.

The second

of bits 16-31 of general register

operand is not

4.14 LOAD

op R1 | R2
01001y g fryprygogo] 1 |
0 4 5 7 8 11 12 13 15
Mnemonic Format
LR R1, R2
Op R1 Disp® B2 °Displacements of the form
010 o[1)1 [| RN | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
L R1, D2 (B2)
o A .
Op R1 m| B2 Address Specification
0j10j0j1j1] | (Jry1yrytjo | N 1 T 1 T T T O O
4 5 7 8 11121314 1516 31
AM Mnemonic Format
Disp
Extended: 0 L R1.02(82) L] N O
Indexed: 1 L(@] [#] R1,D2(X2 B2) X]! Disp
1 1 1A | I I I O O

DESCRIPTION:

The fullword second operand is placed in general register Rl. The second operand is
not changed.

RESULTING CONDITION CODE:
00 The second operand is zero

11 The second operand is negative
01 The second operand is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-16

4.15 LOAD ADDRESS

Op R1 Disp* B2 °Displacements of the form
111111011 | | L 111 | 111XXX are not valid.
0 4 5 7 8 1314 15
Mnemonic Format
LA R1, D2 (B2)
Op R1 a B2 Address Specification
1Jrjjogl | lipapatado | I N
0 4 5 7 8 11121314 15 16 31
AM Mnemonic Format
Extended: 0 LA R1, D2 (B2) Disp
| | I T O O
Indexed: 1 LA[@] [#] R1, D2 (X2, B2) X (A Disp
[| |A LI L 1
DESCRIPTION:
A 16-bit effective halfword address is developed in the normal manner
expanding to 19 bits. This address itself replaces the 16 high-order bits

general register R1.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The 16 low-order bits of general register Rl are zeroed.

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

When R1 = B2, it is possible to increment R1 by the displacement field.

In the RS format when B2
HALFWORD IMMEDIATE
immediate data.
zeros. This
R1.

11 and AM
instruction.
The immediate data is expanded to 32 bits by appending 16 low-order
resulting fullword operand replaces

In this

6-17 -

case,

= 0, this is functionally equivalent to a LOAD
treated as

bits 16 through 31 are

the contents of

general register

4.16 LOAD ARITHMETIC COMPLEMENT

Op R1 R2
frjyopry | jigipojiy g
0 4 5 7 8 1112 13 15
Mnemonic Format
LCR R1, R2

DESCRIPTION:

The twos complement of the fullword second operand replaces the contents of general
register Rl1. Complementation is accomplished by adding the ones complement of the
fullword second operand and a low-order one.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one when the maximum negative number is
complemented. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of high-order bit position of general register. The carry indicator
will only be set when the operand is =zero.

PROGRAM INTERRUPTS:

Fixed point overflow

4.17 LOAD FIXED IMMEDIATE

DESCRIPTION:

A fixed point
The immediate
The immediate

through 31 of

OPX (Bits

[o]
Op R1 % opx
1lolsla gl 1 U 1l1ln L
0 4 5 7 8 111213 15

Mnemonic Format

LFXI

RI, Vaiue

literal value is loaded into the general register specified by RI1.

values
is loaded into

are -2, -1, 0’
bits 0 through 15 of general register R1. Bits 16

1, 2,

3, %, 5, 6, 7, 8, 9, 10, 11, 12 or 13.

general register Rl are set to zero.

12, 13, 164 & 15)

(hex)

TMOOW»>O0O0IAUDUNKOS

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

Imme

diate Value -=> R

(hex)

FFFE0000
FFFF0000
00000000
00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
000A0000
000B0000
000C0000
000D0000

The overflow and carry indicators are not changed by this instruction.

4-19

4.18 LOAD HALFWORD

Op R1 Disp* B2 ‘Displacements of the form
110 |0} 1]1 | | I 1L L | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
LH R1,D2(B2)
A T
Op R1 m| B2 Address Specificiation
1000 W1y | J1qryrytjo 1 T T Y O O
0 45 7 8 11121314 15 16 3
AM Mnemonic Format
Extended: 0 LH R1, 02 (82) Disp
" L1 | S O O
|
Indexed: 1 LH(®] (#] R1,D2(X2 82 X Al Disp
| | L it

DESCRIPTION:
The halfuord second operand is developed into a fullword operand by appending 16
low-order zeros. The resulting fullword operand replaces the contents of general
register Rl1. The second operand is not changed.
RESULTING CONDITION CODE:
00 The fullword operand is zero
11 The fullword operand is negative
01 The fullword operand is positive (>0)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction clears the low-order half of general register R1l.

4.19 LOAD MULTIPLE

Op oPX 'e‘ B2 Address Specifications
1lrdojol1jrjotol a1l gl gl | | |
0 4 5 7 8 1112131415 16 31
AM Mnemonic Format .

Extended 0— LM D2 (B2) Disp
X :

[| Lttt
Indexed: 1 LM(@] [#] D2(x2 B2 X L | Disp

[] LD Lt b

DESCRIPTION:

All eight general registers are loaded from the eight fullword locations starting at
the fullword, second operand address. The general registers are loaded in ascending
order.

RESULTING CONDITION CODE:

N The code is not changed.

2~w" INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction will always have halfword index alignment and will be excluded from
automatic index alignment.

4.20 MODIFY STORAGE HALFWORD

Op oPX Disp* B2 Immediate Data
1joj1j1jojojojol | | | | | | Lttt
0 4 5 7 8 1314 15 16 31

Mnemonic Format °Displacements of the form
MSTH D2(B2), Data 111XXX are invalid.

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data representing a twos
complement integer. This immediate data is added to the halfword main storage
operand. The result replaces the halfword main storage operand. The contents of
the general registers are not changed. Only the contents of the halfword main
storage operand location are altered.

RESULTING CONDITION CODE:
00 The result is zero
11 The result is negative
01 The result is positive (>0)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The MSTH immediate data (mask) is algebraically added to the halfword operand in
main storage. Tally up and tally down is thus possible.

HARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the salected main storage location during the time between the fetch of
the operanr and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

4-22

4.21 MULTIPLY

Op R1 R2
0jrjojoj0f | | jrjryrjejoj ¢ |
0 4 5 7 8 1112 13 15
Mnemonic Format
MR R1,R2
Op R1 Disp* 82 *Displacements of the form 111XXX are not valid.
ojrjojoroj | | | |
0 4 5 7 8 1314 15
Mnemonic Format
M R1,D2(82)
Op R1 d B2 Address Specification
0f1J0j0y0] | | J1p1y1(1]0] | 1 | L. 11] L1 11
0 4 5 78 1112 1314 1516 31
AM Mnemonic Format Disp
Extended: (] M R1,02(B2) | L1111 | I |
|
Indexed: 1 M (@] (#] R1,D2(X2,82) X A Disp
| L L1 1| L1 1
DESCRIPTION:

The product of the multiplier (the second operand) and the
Both multiplier

operand) replaces the multiplicand.

signed twos complement fractions.

fraction number and occupies an even/odd register

an even-numbered general register.

When R1

The product is a 64-bit,

multiplicand (the first

and multiplicand are 32-bit

signed twos complement

pair when the Rl field references

is odd,

bits of the product is saved in general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is

indicator already contains a one,

PROGRAM INTERRUPTS:

Fixed point overflow

only the most

set to one when -1 is multiplied by

=-1.

significant 32

If the overflow

it is not altered by this instruction.

%.22 MULTIPLY HALFWORD

Op R1 Disp® B2'| “Displacements of the form 111 XXX are not valid.
110011011} 1 | 1 1111 |
0 4 5 7 8 1314 15
Mnemonic Format
MH R1,D2(B2)
Op R1 a B2 Address Specification
1jojrjoyr] | | f1p1jlio | LA Lttty
0 4 5 7 8 111213 14 1516 31
AM Mnemonic Format
— Disp
Extended: 0 MH R1,02(82) | | | IR
|
indexed: 1 MH (@] [#] R1,02(X2,82) X |A’ | Disp
| 1 | I O O |
DESCRIPTION:

The product of the halfword multiplier (the halfword second operand) and the
halfword multiplicand (the contents of bits 0 through 15 of general register R1)
Both multiplier and multiplicand are 16-bit signed twos
The product is a 32-bit signed fraction.

replaces the mutiplicand.
complement fractions.
saved in general register R1.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow indicator is
indicator already contains a one,

PROGRAM INTERRUPTS:

Fixed point overflow

4-24

set to one when -1 is multiplied by
it is not altered by this instruction.

-1.

This product is

If the overflow

.23 MULTIPLY HALFWORD IMMEDIATE

Op OoPX R2 Immediate Data
tjojrjrjojrjrgrp 1 j1qofof | | L1 LUttt
0 4 5 7 8 11 1213 15 16 31
Mnemonic Format
MHI R2, Data
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. This halfuword of
immediate data is the multiplier. The contents of bits 0 through 15 of general
register R2 are the halfword multiplicand. The product of the multiplier and the
multiplicand is a 32-bit signed fraction. Both multiplier and multiplicand are
16-bit signed twos complement fractions. This product is saved in general register

R2.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The overflow indicator is set to one when -1 is multiplied by -1. If the overflow
indicator already contains a one, it is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

4-25

4.26 MULTIPLY INTEGER HALFWORD

Op R1 a B2 Address Specification

ooty e] |

0 4 5 7 8 11 1213 14 1516 31
AM Displacement
0

NN

16 31
1 X :\l Displacement

L1 | I I O O I O I |

16 31
AM Mnemonic Format
Indexed: 1 MIH [@] [#] R1, D2 (X2, B2)

DESCRIPTION:

The product of the multiplier (the :twos complement signed integer halfword second
operand) and the twos complement signed integer halfword multiplicand (the contents
of bits 0 through 15 of general register R1) replaces the multiplicand. An
intermediate product is formed as a 31-bit signed integer. This product is
algebraically shifted left 15 places, to form a twos complement signed halfword
integer product. This halfuord product replaces bits 0 through 15 of general
register Rl. Bits 16 through 31 of general register Rl are zeroced.

RESULTING CONDITION CODE:

The code :s not changed.

INDICATORS:

The overflow indicator is set when the upper 16 bits of the intermediate product do
not equal all ones or all zeroes. If the overflow indicator already contains a one,
it is not altered by this instruction. '
PROGRAM INTERRUPTS:

Fixed point overflow

PROGRAMMING NOTE:

If I, J, and K are halfword operands, the equation IXJ+K. may be solved with the
following code:

LH R1,I
MIH R1,J
AH R1,K

p f»«n».\

4.25 STORE

Op R1 Disp* B2 *Displacements of the form 111XXX are not valid.
0j0j1)140{ | | | |
Q 4 5 7 8 1314 15
Mnemonic Format
ST R1,D2(B2)
Op R1 a 82 Address Specification:
0jojrjrjol | | Jrpryprgrfo | Lttt
0 4 5 7 8 111213 14 15 16 : 31
AM Mnemonic Format .
. D2,(82) Disp
Extended: 0 ST R1,D2, l NN 1]
|
Indexed: 1 STI@| [#1 R1.D2(X2.82) X Al Disp
! N O O O
DESCRIPTION:
The contents of general register Rl are stored at the fullword second

location.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS :

The contents of general register R1 are not changed.

The overflow and carry indicators are not changed by this instruction.

operand

4.26 STORE HALFWORD

Op R1 Disp® 82 *Displacements of the form 111XXX are not valid.
ojujig) | | L1111 |
0 4 5 7 8 13 14 15
Mnemonic Format
STH R1,D02(B2)
Op R1 Al B2 Address Specification
Tjojrgrge) 4 | drtigrgajo | I I T T O O O O
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format Dis.
Extended: 0 STH R1,D2 (B2) P
1] | I I O O O
Indexed: STH (@] [# R1,D2 (X2.,82) X 1\ 1 Disp
[I O I O N |
DESCRIPTION:

The most significant 16 bits (bits 0 through 15) of general register Rl are stored
at the halfword second operand location. No other storage location is altered. The
contents of general register Rl are not changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.27 STORE MULTIPLE

Op oPX a B2 Address Specification
1]10j0j1j0jojoj1y1y1y 1)1 | L L Lttt
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format Disp
E ded: ST™M D2(B2)
xrended: 0 L HEEEENNN
Indexed: 1 ST™ (@] [#] D2(X2.82) X L ! Disp
[| | L1

DESCRIPTION:

All eight general registers are stored at the eight fullword locations starting at
the fullword second operand address. The general registers are stored in ascending
order.

RESULTING CONDITION CODE:

The code is not changed.i

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction is excluded from automatic index alignment. Indexes will always
specify the halfword.

=29

.28 SUBTRACT

Op R1 R2
0104070y 1] | | Jrpryrofof | |
0 4 5 7 8 1112 13 15
Mnemonic Format
SR R1.R2
Op R1 Disp* B2 °Displacements of the form 111XXX are not valid.
0j00 01| | | L 1 1.1]
0 4 5 7 8 13 1415
Mnemonic Format
S R1,D02 (82)
Op R1 a 82 Address Specification’
0jo0jojoj1] | (fJ1p1yg1y1io] I I S T I I O O O O |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemoﬁc Format Disp
Extended: 0 S R1,02 (B2)
[I O |
Indexed: 1 Sl@| (# R1,02'(X2.82) .
X 1A Disp
1 1 |
DESCRIPTION:

The fullword second operand is subtracted from the contents of general register R1.
The result replaces the contents of general register Rl. The second operand is not
changed.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the <first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the difference is too large
to be represented in R1; that is, greater than 1-273!, or less than or = -1. If the
overflow indicator already contains a one, it 1is not altered by this instruction.
The carry indicator is set to indicate whether or not there is a carry out of the

high-order bit position of R1.

PROGRAM INTERRUPTS:

Fixed point overflow

.29 SUBTRACT FROM STORAGE

A
On R1 Ml 82 Aﬂd“ﬁsSpcmfmanon
0l10f0jOy 1| | |ty | LUttty
0 4 5 7 8 11 1213 14 15 16 k3
AM Mnemonic Format
Extended: 0 SST R1,D2(B2) Disp
L 1 | |
Indexed: 1 SST (@] | =] ' R1,D2 (X2 B2)
i Dispy
L X1 NN

DESCRIPTION:

The contents of general register Rl are subtracted from the fullword second operand.
The result rerlaces the contents of the second operand location. The first operand
is not changad. .

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first aperand. All 32 bits of both operands participate as in ADD. The
overflow, ca-~ry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 Tke result is zero
11 The rasult is negative
01 Thke result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location. That is, greater than 1-2 3!, or less
than or = =3, If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:
Fixed point overflow
WHARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time betueen the fetch of

the operand and store of the result. Therefore, this insiruction should not be used
Hith any memory locations that might be DMA'd into.

4.30 SUBTRACT HALFWORD

Op R1 Disp* B2 | “Displacements of the form 111 XXX are not valid.
110109011} | | L1111]
0 4 5 7 8 1314 15
Mnemonic Format
SH R1,D02(B2)
Op R1 a B2 Address Specification
1j{ojojoyr) | o qryryrjo | I T Y O O O |
0 4 5 7 8 111213 14 1516 31
AM Mnemonic Format Disp
Extended: 0 SH R1,D02,(82) | | NN
l:1dexed: 1 SH (@] [#] R1,D2(X2,82) X 1Al Disp
: | | Lt
DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This second operand is then subtracted from the contents of
general register Rl. The result replaces the contents of general register R1. The
second halfuword operand is not changed.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 "The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in R1l; that is, greater than 1-2-31, or less than or = -1. If the
overflow indicator already contains a one, it is not altered by this instruction.
The carry indicator is set to indicate whether or not there is a carry out of the
high-order bit position of R1.

PROGRAM INTERRUPTS:

Fixed point overflow

4.31 TALLY DOWN

Op oPX Disp* 82 * Displacement of the form
1jopppjojojojol | | | | | | 111XXX are not valid
0 45 78 13 14 15
Mnemonic Format
T0 D2 (B2)
Op oPX a B2 Address Specifications .
1]0)1j0(0j0 j0jo0j1j1 411140 | | I T O T O O O O O R |
0 4 5 7 8 1112 1314 15 16 31
ﬁﬁ" Mnemonic Format .
Extended: 0 TD D2 (B2) Disp
|] [
| .
Indexed: 1 TD(@] [#] D2 (X2, B2) X al ! Disp
| | I I O I R O
DESCRIPTION:

The main storage halfword operand is decremented by one, and the result replaces the
halfword operand. The contents of the general registers are not changed. Only the
contents of the main storage operand are altered.

RESULTING CONDITION CODE:
00 The result is zero
11 The result is negative
01 The result is positive (>0)
INDICATORS:
The oyerflou and carry indicators are not changed by this instruction.

PROGRAMMING WOTES:

This instruction is similar to the MODIFY STORAGE HALFWORD instruction with an.
implied oper.and of all ones.

WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of tre sclected main storage location during the tim2 betwecen the fetch of
the operand ani store of the result. Therefore, this instruction should not be used
With any memary locations that might be DMA'd into.

5.0 BRANCHING

Instructions are executed, by the central processing unit, primarily in the
sequential order of their locations. A departure from this normal sequential
operation may occur when branching is performed. The branching instructions provide
a means to make a two-way choice, to reference a subroutine, or to repeat a segment

of coding.

Branching is performed by introducing a branch address as the new instruction
address. The 19-bit branch address is generated as described under Expanded
Addressing. Therefore, when a branch is taken, the branch address is used as the
address of the next instruction. If Instruction Protection Monitor is enabled, an
interrupt will occur, regardless of the branch address contents, should the branch
be attempted and the destination location is not storage protected.

5.1 BRANCH AND LINK

Op R1 R2
1pagoe) ot yjojol g
0 4 5 7 8 111213 15
. Mnemonic Format

BALR R1, R2

Op R1 IG B2 Address Spgcification
ryiejel o Jiprprajo d N I N (N O O O
o] 4 5 7 8 111213 14 1516 31

_/ﬂ Mnemonic Format

Extended: 0 BAL R1, D2 (B2) | HEEEEEEEE
Indexed: 1 BAL[@] [=] R1,D2, (X2, 82) X 1! Disp
| | |A I I I I I O

DESCRIPTION:
First, the branch address is computed. Then, the first word of the current PSW
(bits 0 - 31) is loaded into general register R1. Thus, the address of the next
sequential instruction is preserved in register R1 (bits 0 - 15). The remaining
bits of general register R1 (bits 16 - 31) will contain the condition code, the

carry indicator, overflow indicator, the fixed point overflow mask, the exponent
underflow mask, the significance mask, and the contents of the branch and data
sector registers.

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2, if field R2 # 0. This 16-bit branch address is expanded to a 19-bit
branch address. (See Expanded Addressing.) If field R2 = 0, see programming notes.
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

In the case where R2 = 0, (BAIR R1l, 0), no branch is taken.

5=-2

5.2 BRANCH AND INDEX

Op R1 :: B2 Address Specification
yaigofrpr) g Jrjpgryrjo | L4ttt rtd
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format Disp
Extandeds. Ou.m-reBIX R1.D2(82) [HEEEEEEEN
- | Disp
Indexed: 1 BIX (@) (# R1,D2(X2,8B82) X Al
1 Lttt

DESCRIPTION:

Bits 0 through 15 of the general register specified by R1 contain an index. Bits 16
through 31 of general register Rl contain a count. An effective address is computed
in the normal manner for the extended class. (For the indexed addressing mode, the
fullword indirect address pointer must contain zeros in bit locations 22 and 23.)
Next, the index is incremented by one. Then the count is decremented by one. If
the count prior to update is greater than zero, a branch to the effective address is
taken. If the count prior to update is less than or equal to zero, no branch
occurs.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The carry and overflow indicators areAnot changed by this instruction.

5.3 BRANCH ON CONDITION

Op M1 R2
1111010900 4y frpyrodol g g
0 4 5 7 8 11 1213 15
Mnemonic Format
BCR M1, R2
A e L.
) Op M1 . ml B2 Address Specifications
111104050} | ¢ f1p1y1yyo | Ll bbbl
0 4 5 78 1112 13 14 15 16 31
AM Mnemonic Foina_t
Extended- O BC M1, D2 (B2) Disp
: L1 I I O
Indexed: 1 BC(@) [#] M1,D2 (X2 82) X ;L Disp
| | A | | | S I I R |
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the M1 field is a one, the branch is taken for any successful test (e.g., M1
= 111 always branches, M1 = 000 never branches).

The branch address is contained in bits 0 through 15 of general register R2 for the
RR format. This 16-bit branch address is expended to a 19-bit branch address. (See
Expanded Addressing.)

RESULTING CONDITION CODE:

The condition code was set <following all arithmetic, logical, test and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The result and test conditions are shown as follows:

M1l Field (Test)
(5) (6) (7>
Arithmetic and Tally
Zero 1 0 0
Negative 0 1 0
Positive (>0) 0 0 1
Logical
Zero 1 0 0
Not Zero 0 1 0
Test
Zero 1 0 0
Mixed 0 1]
All ones 0 0 1
Compare
Equal 1 0 0
0, < 02“ 0 1 0
0, > 0, 0 0 1

It is possible to combine tests. For example, following the MSTH instruction, an M1
field of 1 0 1 specified branch on nonnegative (zero or positive).

5.4 BRANCH ON CONDITION BACKWARD

- Op M1 Disp* *Displacements of the form
111 |0|1l1 | I 1|0 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
BC8 M1, D2
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by subtracting the Disp from
the updated IC. Thus, when more than one bit of the M1 field is a one, the branch

is taken for any successful test (e.g., Ml = 111 always branches).

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

5-6

£

5.5 BRANCH ON CONDITION (EXTENDED)

Op M1 R2
1j1pfojof | frprgrgoqeg gy
0 4 5 7 8 i1 1213 15
Mnemonic Format
BCRE M1, R2
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the M1 field is a one, the branch is taken for any successful test (e.g., M1
= 111 always branches).

When the branch is taken, PSW bits 0 through 15 and 24 through 31 are replaced by
corresponding bits in general register R2.

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instrﬁction.

PROGRAMMING NOTES:

This instruction is similar to the RR version of the BRANCH ON CONDITION
instruction. It is provided to facilitate subroutine returns across sector

boundaries after general register R2 has been initialized by the use of the BRANCH
AND LINK instruction.

5.6 BRANCH ON CONDITION FORWARD

Op M1 Disp* *Displacements of the form
111XXX are not valid.
o by oo
0 4 5§ 7 8 13 14 15
Mnemonic Format
BCF M1, D2

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by adding the Disp to the
updated IC. Thus, when more than one bit of the Ml field is a one, the branch is
taken for any successful test (e.g., Ml = 111 always branches).)

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators: ar- not changed by this instruction.

5-8

5.7 BRANCH ON COUNT

Op R1 R2
MR I AN L
0 45 7 8 111213 15
Mnemonic Format
BCTR R1,R2
op R1 Al B2 Address Specification
111101 110f | 111(1111]0 | Illlllllllllll!
0 45 738 1112 1314 15 16 3
&A Mnemonic Format
Extended: 0 BCT R1,02 (B2) Disp
, | L bt
Indexed: 1 BCcTi@l (¥ R1D2(x282)| x [!] Disp
| | |
DESCRIPTION:

First, the branch address is computed. The branch address is contained in bits 0
through 15 of general register R2 for the RR format. This 16-bit branch address is
expanded to a 19-bit branch address. (See Expanded Addressing.)

Then, the contents of bits 0 through 15 of general register Rl are reduced by one.

When the result is =zero, the next sequential instruction is executed in the normal
manner. When the result is not 2zero, the instruction counter is loaded with the

branch address.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, and no branch takes place. An initial
count of zero results in a minus one and causes branching to be executed. The
low-order 16 bits of R1 do not participate in the count or zero test.

5.8 BRANCH ON COUNT BACKWARD

Op ‘R1 Disp 1 °Displacements of the form 111XXX are not valid.
RN LRI L1111 [!
0 4 5 7 8 1314 15
Mnemonic Format
BCTB R1,D2
DESCRIPTION:

First, the branch address is formed by subtracting the displacement from the updated
instruction counter. Then, the contents of bits 0 through 15 of general register Rl
are reduced by one. When the result is zero, the next sequential instruction is
executed in the normal manner. When the result is not zero, the instruction counter
is loaded with the branch address.

RESULTING CONDiTION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, and no branch takes place. An initial

count of zero results in a minus one and causes branching to be executed. The
low-order 16 bits do not participate in the count or zero test.

5-10

5.9 BRANCH ON OVERFLOW AND CARRY
Op M1 R2
1jrgogt) | jigryrqofof | |
0 4 5 7 8 11 1213 15
Mnemonic Format
BVCR M1,R2
Op M1 a 82 Address Specification
141104031 | | Jrypryrgrjo] HN N N A A N T T I |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemonic Format
Disp
Extended: 0 BvC M1,D2,(B2)
X HEEENEENN
Indexed: 1 BvC (@] (=] M1,D2 (X2,82) L | Disp
L1 | |
DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits.
field, instruction bits 5 through 7 specifies the test.
instruction bit 7
"specified bit of the PSW
when both indicators are
one.

against PSW bit 18 (carry), and
(overflow). Whenever a
and the branch is taken.

branch is taken if either

Thus,

indicator contains a

is tested

is a one, the

inverts the logic, causing bits 6 and 7 to test the PSW bits for =zero.

For the RR format,
register R2. This 16-bit branch
(See Expanded Addressing.)
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set
changed by this instruction.

PROGRAMMING NOTES:

the branch address is contained in bits 0
address is expanded to a 19-bit

0 by this instruction.

The possible combinations of test conditions are shown as follows:

5-11

tested by M1
A one in instruction

Instruction bit 6
against PSW bit 19
test is successful
011,

The carry indicator

is tested

through 15 of general
branch address.

X
[

Ml Field

(]
o~
N

- -0 000

= -0 0 M- OO

= O MO OO

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Test Conditions

never taken (no operation)

on Overflow

on Carry

either on Overflow or on Carry

On No Overflow

On No Carry
On No Overflow and No Carry

5-12

5.10 BRANCH ON OVERFLOW AND CARRY FORWARD

Op M1 Disp® *Displacements of thg form
111!01111 [1] |] 011 111X XX are not valid.
0 45 78 13 14 15
Mnemonic ‘ Format
BVCF M1, D2

DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits.
Instruction bits 5 through 7 specify the test. Instruction bit 6 is tested against
PSW bit 18, and instruction bit 7 is tested against PSW bit 19. Whenever a
specified bit of the PSW is a one, the test is successful and the branch is taken by
adding the Disp to the updated IC. Thus, when both indicators are tested by M1 =
011, the branch is taken if either indicator contains a one. A one in instruction

bit 5 inverts the logic, causing bits 6 and 7 to test the PSW bits for zero.

The branch address is formed by adding the displacement to the updated instruction
counter.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow indicator is set 0 by this instruction. The carry indicator is not
changed by this instruction. '

PROGRAMMING NOTES:

The possible combinations of test conditions are shown as follows:

Ml Field Test Conditions

5612

000 Branch never taken (no operation)
001 Branch on Overflow

010 Branch on Carry

011 Branch either on Overflow or on Carry
1 00 Branch

101 Branch On No Overflow

11090 Branch On No Carry

111 Branch On No Overflow and No Carry

(This page intentionally left blank)

5-1¢6

PN

6.0 SHIFT OPERATIONS

Shift instructions use the halfword format. The shift count is defined by the count
field, as shown in Figure 6-1.

Instruction Bits 8-13 Shift Count Determined By
000000 (Zero) No Operation

000001-110111 (1-55) Instruction bits 8 through 13
111000 (56) Bits 10 - 15 of general register 0
111001 (57) Bits 10 - 15 of general register 1
111010 (58) Bits 10 - 15 of general register 2
111011 (59) Bits 10 - 15 of general register 3
111100 (60) Bits 10 - 15 of general register ¢
111101 (61) Bits 10 - 15 of general register 5
111110 (62) Bits 10 - 15 of general register 6
111111 (63) Bits 10 - 15 of general register 7

Figure 6-1. Shift Count

If the shift count is 56 through 63, bits 10 through 15 of the corresponding general
register (0 through 7) designate the shift count. When specified using the count
field, the maximum shift count allowed for shift operations is 55. Shifts of up to
63 positions are allowed, when general register 0 through 7 is used to specify a
computed shift. »

6.1 NORMALIZE AND COUNT

Op R1 R2
Tp1j110§0) ¢ fryprqrgof1f | |

0 4 5 7 8 1112 13 15

Mnemonic Format
NCT R1, R2

DESCRIPTION:

First, all bits (0 through 31) of general register Rl are set to zero. For each
position that the contents of general register R2 are shifted to the left, the
high-order half of general register R1 (bits 0 through 15) is incremented by 1. The
shift terminates when bit position 0 # bit position 1 of general register R2. If
the contents of general register R2 are initially zero, a count of zero is entered
in general register Rl. Zeros are entered into the vacated low-order bits of
general register R2. Upon completion of this instruction, the count is contained in
bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The carry indicator will be zero at the end of the operation, if general register R2
contains zero. The carry indicator will be one at the end of t+e operation, if the
shift is terminated by the detection nf bit position one not equal to bit position 0
of the general register R2. The overflow indicator is not changed by this
instruction.

PROGRAMMING NOTES:

If the initial condition of general register R2 was such that bit position 0 is not
equal to bit position 1, the count in the high-order bit of general register Rl is
zero, the carry indicator 1is one, and there is no shift. If the initial condition
of R2 was all ones, the count is 31, the carry is one and R2 contains 80000000.

This instruction is executed as shown below in Figure 6-2.

START

Count =0

Yes

R2=0?

<

Reset Carry
Indscator
RY=— @
Set Carry
indicator
To One
R1 <=—Cgunt
Overation
Comopieted

Figure 6-2.

Shitt R2
Latt One

Increment Count
By One

Normalize and Count Execution

6.2 SHIFT LEFT LOGICAL

Op R1 Count
11]111104 | | | 1 1 1] Jolo
0 4 5 7 8 13 14 15

Mnemonic Format
SLL R1,Count

DESCRIPTION:

The contents of general register Rl are shifted left, as specified by the shift
count Figure 6=1. Zeros are entered into the vacated low-order bits of general
register Rl. Bits leaving the high-order bit (bit 0 of general register R1)
position are entered in the carry indicator (see indicators below). Bits shifted
out of the carry indicator are lost. Only the contents of general register Rl are
changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry indicator is set to one for each one, and to zero for each zero, shifted
left from the high-order position of general register Rl1. The overflow indicator is
not changed by this instruction.

PROGRAMMING NOTES:

When the shift count n is greater than 31, then the result of the shift of general
register Rl is zero.

6-4

6.3 SHIFT LEFT DOUBLE LOGICAL

Op R1 Count

LN RN IR L1 1 11 lojo
0 45 7 8 13 14 15

Mnemonic Format

SLDL R1,Count

DESCRIPTION:

The contents of the pair of general register; (Rl and (R1+1)mod8) are shifted letr*
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position zero of general register (R1 + 1dmod8, are
entered into bit position 31 of general register RI1. . Zeros are entered into the
vacated low-order bits of general register (Rl + 1)mod8. Bits leaving the
high-order bit position (bit position 0 of general register Rl1) are shifted into the
carry indicator. Bits shifted out of the carry indicator are lost.

RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:
The carry indicator is set to one for each one, and to 2ero for each zero, shifted

left from +the high-order bit position of general register RI1. The overflow
indicator is not changed by this instruction.

6-5

6.4 SHIFT RIGHT ARITHMETIC

Op R1 Count

LRI R L L1 1 1 ot
0 4 5 7 8 1314 15
Mnemonic Format

SRA R1,Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Bits equal to the sign are entered into vacated high-order bit
positions. Bits shifted out of bit position 31 of general register Rl are lost.
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

A shift right of n is equivalent to dividing the contents of general register Rl by
20,

6.5 SHIFT RIGHT DOUBLE ARITHMETIC

Op

111111

R1 Count
] Lt L 11 Jols

DESCRIPTION:

1
0

4 5

——

7 8 13 141
Mnemonic Format

SRDA R1,Count

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register Rl, are entered into
bit position 0 of general register (R1 + 1)mod8. Bits equal to the sign are entered
into vacated high-order bit positions. Bits shifted out of bit positior 31 of
general register (R1 + 1)mod8 are lost.

as a 664-bit register.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-7

6.6 SHIFT RIGHT DOUBLE LOGICAL

Op R1 Count

L LIS L L I T O O O R B R R)
0 4 5 7 8 13 14 15
Mnemonic Format

SRDOL R1,Count

DESCRIPTION:

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. Zeros are entered into all vacated high-order bit positions. Bits shifted
out of bit position 31 of general register Rl, are entered into bit position 0 of
general register (R1 + 1)mod8. Bits shifted out of bit position 31 of general
register (R1 + 1)mod8 are lost. ‘

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-8

6.7 SHIFT RIGHT LOGICAL

Op R1 Count
rjrgngod || | I R I
0 4 5 7 8 13 14 15

Mnemonic Format
SRL R1.Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Zeros are entered into all vacated high-order bit positions.
Bits shifted out of bit position 31 of general register R1 are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators arc aot changed by this instruction.

6.8 SHIFT RIGHT AND ROTATE

Op R1 Count
1jijriol || L 11 11t
0 4 5 7 8 13 14 1
Mnemonic Format
SRR R1,Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Bits shifted out of bit position 31 are entered into bit
position 0. The general register thus becomes a circular register and no bits are
lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-10

6.9 SHIFT RIGHT DOUBLE AND ROTATE

Op R1 Count
IERELERIRE N BN I ERL
0 4 5 7 8 13 14 1
Mnemonic Format
SRODR R1,Count

DESCRIPTION:

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register Rl are entered into
bit position 0 of general register (R1+1)modS8. Bits shifted out of bit position 31
of general register (R1+1)mod8 are entered into bit position 0 of general register
Rl1. Thus, the two registers become a single, circular, 64-bit register, and no bits
are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

When the shift count equals 32, the contents of general register Rl and (R1+1)mod8
are exchanged.

(This page intentionally left blank)

7.0 LOGICAL OPERATIONS

A set of instructions is provided for the logical manipulation of data. Fullword
operands consist of 32 bits. Halfword immediate and storage operands are developed
into fullword operands by appending 16 low-order zeros. The sign position is
treated in the same manner as any other position.

There is no interdependence between bits for logical operations; that is, the result
in position i is independent of bit j in either operand when i is not equal to j.

7.1 AND
Op R1 R2
ojojijojof | | filslilolol | |
0 4 5 7 8 13 15
Mnemonic Format
NR R1,R2
Op R1 Disp*® B2 * Displacements of the form
111XXX are not valid.
gjoji1jojof | | | 1 1 1]]
0 35 7 8 111213 14 15
Mnemonic Format
N R1,D2 (82)
Op R1 ‘:ﬂ 82 Address Specification
0lo0]1]olo] 11j111]1]0 | I I 1 T I |
0 4 5 7 8 11 12 13 14 15 16 1
AM Mnemonic For- -
Extended: 0 N Ri,_. 32 Disp
1 1 1 I S O T O O |
Indexed: 1 N (@] [#] R1,D2 (X2, B2) X ar Disp
[1A Ll bt
DESCRIPTION:
The logical product (AND), of the fullword second operand and the contents of
general register Rl, is formed bit-by-bit. The result replaces the contents of
general register R1. The second operand is not changed. The following table

defines the AND operation.

AL
Storage 1100
R1 1010
Result 1000

RESULTING CONDITION CODE:

23 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-2

7.2 AND HALFWORD IMMEDIATE

Op oPX R2 Immediate Data

tjofrjrjofrjijolrfrjajojol | | I S I
0 45 78 111213 15 16 :

Mnemonic Format

NHI R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword
immediate data is first developed into a fullword by appending 16 low-order zeros.
The logical product (AND), of this fullword operand and the contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the

AND operation.

AND
Immediate Data 1100
R2 1010
Result 1000

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The least significant 16 bits of the result (bits 16 through 31) will always be
zero.

7.3 AND IMMEDIATE WITH STORAGE

Op OoPX Disp® 1 B2 Immediate Data

1joqryijojrgrgol | 1111 | N T O O O B N R
0 45 7 8 13 14 15 16 31

3

Mnemonic Format Displacements of the form
NIST D2(B2), Data’ 111XXX are invalid.

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical product (AND), of this immediate data and the halfword main storage operand,
is formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The zero bits in the immediate data specify the bits of the halfword first operand
that are set to =zero. Zero bits in the halfword main storage operand remain

unaltered.
WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit 1I0P
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
with any memiry locations that misht be DMA'd into.

7.6 AND TO STORAGE

Op R1 a B2 Address Specification
ofof1jojof | | dr1l1]sl1ls | R % T s (M (e Wi i Wl G s AT
0 4 5 7 8 1112 13 141516 1
AM Mnemonic Format
Extended: 0 NST _ TR1.02(82) Disp
1 1 1 I N T O O I O
Indexed: 1 NST (@] (#] R1,02(X2,82) X feb L Disp
| N
DESCRIPTION:

The logical product (AND), of the fullword second operand and the contents of
general register Rl, is formed bit-by-bit. The result replaces the second operand.
The contents of the general register are not changed. The following table defines

the AND operation.

AND
Storage 1100
R1 1010
Result 1000

RESULTING CONDITION CODE:

00 The result is =zero
11 The result is not zero

INDICATORS:
The overlow and carry indicators are not changed by this instruction.
WARNING!
This ‘instruction requires multiple memory accesses. The CPU does not prohibit I0P
accesses of th2 selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, thic instruction should not be used
With any mem3ry locations that might be DMA'd into.

7.5 EXCLUSIVE OR

Or R1 R2
O0j1y1y1of y J J1p1p1qojof | |
0 4 5 78 13 15
Mnemonic Format
XR R1, R2
Op R1 Disp* B2 ® Displacements of the form
01 l1|1 | 0 l i l l 1 l l l 111XXX are not valid.
0 4 5 7 8 1112 13 14 15
Mnemonic Format
X R1,D02(82)
A
Op R1 M| 82 Address Specification
0119111104 ¢t ¢ J1y1y1yr]o | e e
0 4 5 7 8 11 121314 15 16 31
AM Mnemonic Format
Extended: 0 X R1,D02(B2) Disp
1 1 | I S O I I O O O
: Indexed: 1 X [@] (#] R1,D2(X2,82) .
DESCRIPTION: x Al Diso
] 1 | O O I R

The modulo-tuwo sum (Exclusive OR), of the fullword second operand and the contents
of general register R1, is formed bit-by-bit. The result replaces the contents of
general register R1. The second operand is not changed. The following table
defines the Exclusive OR operation.

Exclusive OR

Storage 1100
R1 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

The ones complement of the general register is obtained when the second operand
contains all ones.

7.6 EXCLUSIVE OR HALFWORD IMMEDIATE

Op oPX R2 Immediate Data

1o yrjojryoqojryryrjojol | | LIt
0 4 5 7 8 111213 15 16 1

Mnemomic Format

XHI R2,Data

DESCRIPTION:

Instruction bits 16 though 31 are treated as immediate data. The halfword of
immediate data is first developed into a fullword by appending 16 low-order zeros.
The modulo-two sum (Exclusive OR), of this fullword operand and contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the
Exclusive OR operation.

Exclusive OR

Immediate Data 1100
R2 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.7 EXCLUSIVE OR IMMEDIATE WITH STORAGE

Op oPX Disp*® B2 Immediate Data
1O o o108 3ot b b L
0 45 7 8 13 14 15 16 31
Mnemonic Format ° Displacements of the form

111XXX are invalid.
XIST D2(82),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
modulo-two sum (Exclusive OR), of this halfword immediate data and the halfword main
storage operand, is formed bit-by-bit. The result replaces the halfword main
storage operand.)

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not =zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
HARNING!
This instruction regquires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Wwith any memory locations that might ba DMA'd into.

7.8 EXCLUSIVE OR TO STORAGE

A
Op R1 M| B2 Address Specification
Of MM Mo o qrpr g I O O R R
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format

Extended: 0 XST R1,02(B2) Disp

1 1 1 A I O T O O O O
Indexed: 1 XST[@] (#] R1,02(X2,82) X il Disp

[1 |A L1l

DESCRIPTION:

The modulo-twe sum (Exclusive OR), of the fullword second operand and the contents
of general ~ejister Rl, is formed bit-by-bit. The result replaces the second
operand. The contents of the general register are not changed. The following table
defines the Exzlusive OR operation.

Exclusive OR

Storage 1100
R1 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

7.9 OR
Op R1 R2
01011|011] 111111040 | |
0] 4 5 7 8 1112 13 15
Mnemonic Format
OR R1,R2
Op R1 Disp*® B2 * Displacements of the form
01011 |011 1 l l l | l | I 111XXX are not valid.
.0 4 5 7 8 13 14 15
Mnemonic Format
0 R1,02(B82)
A
Op R1 M| B2 Address Specification
ojofrjojty | | {1prprprjo | I R |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemonic Format
Extended: 0 0 R1,D2(82) Disp
L1 1 | I O N |
Indexed: 1 0 (@] (#] R1,02(X2,82) X 1] Diso
. Ly
DESCRIPTION:

The logical

sum (OR), of the fullword second operand

and the contents

is formed bit-by-bit.

The

result replaces

the contents

of general
of general

register R1,
register R1.
operation.

The second operand is not changed.

The following table defines the OR

OR

R1
Result

Storage

[RSy
-

[-3
oo o

RESULTING CONDITION CODE:

The result is zero
The result is not zero

00
11

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-10

7.10 OR HALFWORD IMMEDIATE

Op oPX R2 Immediate Data _
1jogryrojoqrjo gty 1y 1y0jof 4 I O B R R
0 -4 5 7 8 111213 15 16 31

Mnemonic Format

ORIl R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfuword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The logical sum (OR), of the fullword operand and the contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the

OR operation.

OR
Immediate Data 1100
R2 1010
Result 1110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.11 OR TO STORAGE

Op R1 a 82 Address Specification
0101101 g jrpyye | Lt tr
) 4 5 7 8 1112 13 14 15 16 3
AM Mnemonic Format _
Extended: 0 OSsT R1,D2(B2). Disp
| | | I I S S O O O |
Indexed: 1 OST (@] [#] R1,D2(X2,82) X 11 Disp
L |A LU
DESCRIPTION:

The logical sum (OR), of the fullword second operand and the contents of general
register R1, is formed bit-by-bit. The result replaces the second operand. The
contents of general register Rl are not changed. The following table defines the OR
operation.

OR
Storage 1100
R1 1010
Result 1110

RESULTING CONDITION CODE:

00 The rasult is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of th2 selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Hith any memory locations that might be DMA'd into.

7.12 SEARCH UNDER MASK

Op R1 R2
VIo0jogugtf ¢ lrprpnolty g
0 4 b 7 8 11 1213 186

Mnemonic Format
SUM R1, R2

DESCRIPTION:

A variable search of an array under control of fields in a mask for specific bit
patterns i: performed. A twos complement 16-bit integer count is contained in bits
0 through 15 of the general register specified by R2. (This must be a positive
number for correct execution of this instruction.)

The address of an array (Ai) is contained in bits 0 through 15 of the general
register pair specified by Rl and (Rl +1)mod8. A tuwos complement integer modifier
is contained in bits 16 through 31. After each Ai has been located via bits 0
through 15, the modifier is added to the most significant 16 bits of "general
register R1. This result replaces the most significant 16 bits. The modifier is
not changed. A 16-bit mask (M) is contained in bits 0 through 15 of the general
register specified by (R1+1)mod8 while field values (FV) are contained in bits 16

through 31.

The following equation is solved.
CAifMY B (FYAM)

where
i =1, .. ., count

A

C)= logical Exclusive-OR function.

logical AND function

Ai AMextracts bits selected by the mask out of array. FVA M extracts bits selected
by the mask also. These latter bits are compared with AiAM. If they are equal, the
comparison cintinues until the count is exhausted. The condition code reflects the

result of this operation.

If the comparison indicates an inequality, the instruction is terminated with the
address of the inequality operand located in general register R1, bits 0 through 15.

RESULTING CONDITION CODE:
00 All array items matched

11 An array item mismatched and general register Rl has the address where it
failed

7-13

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This is a variable length instruction execution. Care must be taken to ensure
proper interrupt response by using sufficiently small count values. 1In order to

assure proper completion of the putaway routine, the programmer must make sure that
the count values do not exceed sixteen.

The following flowchart indicates how this instruction is executed:

Start
Y « Aij e e = = —={ Ai= MS(PTR)
i=1
X~ FVA M
SetCC*-mOO Is(YAM) @ X Set CC + 11
PTR « =
018 0°? R1gqg + PTR
INC + R1
16:31 PTR = PTR + INC
: i*=i+1
Yes
i <Count
N
—

Return

'

7.13 SET BITS

Op oPX Disp* 82 Immediate Data
VO TN 9010 11t | N 1 O Y
0 4 5 78 13 1415 16 31
Mnemonic Format * Displacemencs ot the form

111XXX are invalid.
S8 D2(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical sum (OR3}, of the immediate data and the halfword main storage operand, is
formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword mask specify the bits of the halfword second operand
that are set one. The result replaces the halfword second operand. The following
table defiras this instruction.

SET BITS

Mask 1100

Storage 1 010

Result 1110
WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the salected main storage location during the time betwsen the fetch of
the operand and store of the result. Therefore, this instruction should not be used
with any memory locations that might be DMA'd into.

7.16 SET HALFWORD

- Op oPX Disp*® B2 ® Displacements of the form
110(110]0]0(1]0 11]| | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
SHW D2(B2)

Op oPX a B2 Address Specification
1/]0j1j0jo0foj1jo0{1j141]1}0] T I I I O O O O O R
0 4 5 78 111213 14 15 16 31

AM Mnemonic Format
Extended: 0 SHW D2(B2) Disp
1 1 1 | I O O O O O |
Indexed: 1 SHW(@] [#] D2(X2,B2) X 11 Disp
| 1 1A LIttt
DESCRIPTION:

The halfword main storage operand is set to all ones.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction is similar to the SET BITS instruction with the mask (i.e.,
immediate data) equal to all ones.

7.15 TEST BITS

Op oPX Disp B2 Immediate Data

ogtprqofoqryl | || (| | LUt r
0 3 5 7 8 13 14 1516 31

-

Displacements of the form
111XXX are invalid.

Mnemonic Format

T8 D2(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. This halfword
immediate data is logically tested with the halfuord main storage operand. A one in
the immediate data tests the corresponding bit in the halfword main storage operand.
The halfword main storage operand is not changed. The result of the test is given
in the condition code.

RESULTING CONDITION CODE:
00 Either the bits selected by the immediate data are zeros or the immediate
data is all zeros
11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-17

7.16 TEST REGISTER BITS

Op oPX R2 Immediate Data

1lofrjrjojojrjijijrjrjojol | | N O O O B N O
0 4 5 7 8 11 1213 15 16 31

Mnemonic Format

TRB R2,Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. A fullword
operand is formed by appending 16 low-order zeros.

A one in this fullword tests the corresponding bit in general register R2. The
corresponding bit position in general register R2 is not changed. The result of the
test is given in the condition code.

RESULTING CONDITION CODE:

00 Either the bits selected by the immediate data are all zeros or the
immediate data is all zeros
11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones
INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-18

7.17 TEST HALFWORD
Op oPX Disp® 82 * Displacements of the form
UO 11 1010 °l1l1 [11]| | 111XXX are not valid.
0 4 5 7 8 1314 15
Mnemonic Format
TH D2(82)
Op oPX a B2 Address Specification
1/]0)1j0t0joj1y1} 141(1]1]0 | I S O A O I O I
0 4 5 7 8 111213 14 15 16
AM Mnemonic = Format Diso
Extended: 0 TH B :
D282} L1 (L1 1
Indexed: 1 TH (@] [#] Dp2(x2B2) X L Diso
[| 1A I
JESCRIPTION:
All bits in the halfword main storage operand are tested. This operand is not
changed. The result of the test is given in the condition code.

RESULTING CONDITION CODE:

00 The bits are all zeros
11 The bits are mixed with zeros and ones
01 The bits are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is the same as the TEST BITS instruction with the mask equal to all

ones.

7.18 ZERO BITS

Op oPX Disp*® B2 Immediate Data
1yo0pvjrjojojoqry | | | | | | Lty
0 4 5 7 8 1314 15 16 31

Mnemonic Format ° Displacements of the form

111XXX are invalid.
ZB D2(82),Data

DESCRIPTION:

The logical complement of bits 16 through 31 of this instruction is ANDed to the
halfword main storage operand bit-by-bit. The result replaces the halfword main
storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING WABTES:

The one bits in the halfword immediate data specify the bits of the halfword main

storage operand that are set =zero. The result replaces the halfword main storage
operand. Th2 following table defines this instruction:

ZERO BITS
Immediate Data 1100
Storage 1010
Result 0010
HARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time betueen the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memary locations that might be DMA'd into.

~
U

20

7.19 ZERO REGISTER BITS

Op oPX R2 Immediate Data

Ljojryrjojoqor g grgofo] § oLl bbb
0 4 5 7 8 111213 1516 3

Mnemonic Format

ZRB R2,Data

DESCRIPTION:
First, the halfuword immediate data is expanded to a fullword by appending 16

low-order zeros. The logical complement of this fullword is then ANDed to the
contents of general register R2. The result replaces general register R2.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The ovgrflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword immediate data specify the bits in the general register

that are set zero. Bits 16 through 31 of general register R2 are not changed by
this instruction.

7.20

ZERO HALFWORD

Op oPX Disp* B2 ° Displacements of the form
1]0]1]0]0 0(0f1 N 1 111XXX are not valid.
0 4 5 7 8 13 14 15

Mnemonic Format
ZH D2(B2)

Op oPX ::1 B2 Address Specification
11o0j1jojo0fojoj1j1jry1y1fo] T T N
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format
Extended: 0 ZH D2 (B2) Disp
L1 1] | S N R |
Indexed: 1 ZHI@| =] .D2(X2.82) x || Diso
| 1A I I O O R A
DESCRIPTION:

The halfword second operand is set to all zeros.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is similar to the ZERO BITS

ones.

instruction with the

mask equal to

all

8.0 FLOATING POINT OPERATIONS

The floating point instruction set is used to perform calculations on operands with
a wide range of magnitude and to yield results scaled to preserve precision.

A floating point number consists of a signed exponent and a signed fraction. The
quantity expressed by this number is the product of the fraction and the number 16
raised to the pdwer of the exponent. The exponent is expressed in excess 64 binary
notation; the fraction is expressed as a sign-magnitude hexadecimal number having a
radix point to the left of the high-order fraction digit.

The floating point instruction set provides for loading, adding, subtracting,
comparing, multiplying, dividing, and storing. Short operands generally provide
faster processing and require less storage than long operands. On the other hand,
long operands provide greater precision in computation. Operations may be either
register-to-register or storage-to-register. All floating point instructions are
part of the floating point feature including the two data conversion instructions.
A normalized number is one in which the high-order hexadecimal digit of the fraction
is not zero or else one in which both the fraction and characteristic are zero (true
zZero).

Maximum precision is preserved in addition, subtraction, multiplication, and
division because all results are normalized.

The condition code is set as a result of all compare, add, subtract, and load
operations.

8.1 DATA FORMAT

Floating point data occupy a fixed-length format which may be either a fullword
short format or a doubleword long format. Both formats may be used in main storage.

Short Floating-Point Number

S " Characteristic Fraction
L1t 1t LAt ittt ety
01 ‘ 78 31

Long Floating-Point Number

S Characteristic Fraction k}l ‘
I O | | I I O O S I N I O I N O O IO O O

01 78 63

The first bit in either format is the sign bit(s). The subsequent seven bit
positions are occupied by the characteristic. The fraction field may have either
six or 14 hexadecimal digits.

Although final results have six fraction hexadecimal digits in short-precision,
intermediate results may have additional low-order digits. These low-order digits,
the guard digits, increase the precision of the final result.

8.2 NUMBER REPRESENTATION

The fraction of a floating point number is expressed in hexadecimal digits. The
radix point of the fraction is assumed to be immediately to the left of the
high-order fraction digit. To provide the proper magnitude for the floating point
number, the fraction is considered to be multiplied by a power of 16. The
characteristic portion, bits 1 through 7 of both floating point formats, indicates
this power. The bits within the characteristic field can represent numbers from 0
through 127. To accommodate large and small magnitudes, the characteristic is
formed by adding 64 to the actual exponent. The range of the exponent is thus -64%
through +63. This technique produces a characteristic in excess 64 notation.

Both positive and negative duantifies have a true fraction, the difference in sign
being indicated by the sign bit. The number is positive or negative accordingly as
the sign bit is zero or one.
The range covered by the magnithde (M) of a normalized floating point number is:

In short precision - 16 85 < M < (1-167%) o 16%3, and

In long precision = 16 %5 < M < (1-16714) e 1663,

Or approximately = 5.4 e 10 79 < M < 7.2 o 1075,

The short and long precisions contain 6.2 and 15.5 decimal digits, respectively.

A number with zero characteristic, zero fraction, and plus sign is called a true
zero. A true zero may arise as the result of an arithmetic operation because of the

particular magnitude of the operands. A true zero is forced when one or both
operands of MULTIPLY or the dividend in DIVIDE has a zero fraction. The sign of a
sum, difference, product, or quotient with zero fraction is positive. The proper

representation of a floating point zero when used for any of the floating point
operations is the true zero form.

8.3 NORMALIZATION

A quantity can be represented with the greatest precision by a floating point number
of given fraction length when that number is normalized. All floating point
operations preserve maximum accuracy when normalized inputs are used. A normalized
floating point number has a nonzero high-order hexadecimal fraction digit or is a
true zero (all digits =zero). If one or more high-order fractional hexadecimal
digits are zero, the number is said to be unnormalized unless it is a true zero.
The process of normalization consists of shifting the fraction left until the
high-order hexadecimal digit is nonzero and reducing the characteristic by the

8-2

“number of hexadecimal digits shifted. A zero fraction cannot be normalized, and its

associated characteristic therefore remains unchanged when normslization is called
for. A floating point word of all zeros is defined as a true zero.

Normalization usually takes place when the intermediate arithmetic result is changed
to the final result. This function is called postnormalization, and it is performed
as part of instruction execution. Nonarithmetic instructions (i.e., Loads and
Stores) do not normalize their outputs.

PROGRAMMING NOTES:

Floating point operands should be normalized prior to instruction execution;
however, unnormalized inputs are not rejected via the unnormalized input interrupt

as in earlier versions of this computer. Please note that although unnormalized
inputs are accepted, programmers should expect a loss in accuracy for utilizing
unnormalized numbers and their use is not recommended. Also note that for all

arithmetic operations, any input with a zero fraction is treated as a true zero
regardless of its sign or characteristic. A zero input to an arithmetic instruction
wWwill cause the bulk of the processing algorithm for the instruction to be bypassed,
resulting in drastic decreases in execution time.

.. 8.4 FLOATING POINT SECOND OPERANDS

Second operands for the floating point set are no longer restricted by harduware to
even halfword boundary address locations.

8.5 FLOATING POINT REGISTERS

The registers used for floating point arithmetic are distinct or separate registers
from those used for fixed point arithmetic. Register designation may be even or odd
for short operands.

The first operand is contained in floating point register Rl when the second operand
is a short 32-bit operand. If the second operand is a long or extended operand, the
first operand is contained in the pair of floating point registers specified by Rl
and (R1+1)mod8.

Floating-Point Register (even or odd)

S | Characteristic : Fraction

0 1 7 8

S| Characteristic

I O O I O |

Q1 7 8

Figure 8-1. Floating Point Operands in Registers

A comprehensive set of floating point instruction
summarizes the
precision used for the floating

long operands. Figure 8-2

individual instructions.

various

is available for both
combinations
point operands. For further

Short 2nd Operand

Long 2nd Operand

Convert to Floating
Convert to Fixed
L

SRSs
A/S

‘_"PUZ

RSs

(7]

t_/]r-ognz

24— 32
R —24

2424

2d<—24+ 24
24/48 «—=24 x 24
24— 24 24
24t 24

24 =24,

2424+ 24
24: 24
24/4§<—24 x 24
2424 =~ 24
28t 24,

28 e 24,

Instructions Operand Operand
Result 1 2 | Result 1 2
RARs
A/S 28424 + 24 56-+——56 + 56
c 24 : 24 56 : 56
M 24/48 -—24 x 24 56 =——56 X 56
D 24 —24 =24 56-=—— 56 — 56

56— 56+ 56

56 : 56
56— 56 x 56
56<——56 56
56 +————56

56 ————=56

Figure 8-2. Combinations of

short and

of fractional

see the

Fractional Precision for Floating Point Operands

) !ﬂgmm\%\

8.6 FLOATING POINT INSTRUCTIONS

The floating point arithmetic instructions and their mnemonics, and descriptions
follow. The following table indicates when the condition code is set and the
exceptions in operand designations, data, or results that cause a program
interruption.

Name Mnemonic Type Exceptions
Add (Long Operands) AEDR RR C. U,E,S
Add (Long Operands) AED RS C U,E,S
Add (Short Operands) AER RR C U,E,S
Add (Short Operands) AE SRS,RS C U,E,S
Compare (Long Operands) CEDR RR C
Compare (Long Operands) CED RS C
Compare (Short Operands) CER RR C
Compare (Short Operands) CE RS €
Convert to Fixed Point CVFX RR C o]
Convert to Floating Point CVFL RR C
Divide (Extended Operands) DEDR RR U,E,F
Divide (Extended Operznds) DED RS U,E,F
Divide (Short Operands) DER RR U,E,F
Divide (Short Operands) DE SRS, RS U,E,F
Load (Long Operands) LED RS C XN
Load (Short Operands) LE SRS, RS C XN
Load (Short Operands) LER RR C XN
Load Complement (Short Operands) LECR RR C XNx*
Load Fixed Register LFXR RR XN
Load Floating Immediate (Short

Operands) LFLI RR
Load Floating Register (Short .
Operands) LFLR RR ' XN

Midvalue Select (Short Operands) MVS RS C
Multiply (Extended Operands) MEDR RR U,E
Multiply (Extended Operands) MED RS U,E
Multiply (Short Operands) MER RR U,E
Multiply (Short Operands) ME SRS, RS U,E
Store (Long Operands) STED RS XN
Store (Short Operands) STE SRS,RS XN
Subtract (Long Operands) SEDR RR C U,E,S
Subtract (Long Operands) SED RS C U,E,S
Subtract (Short Operands) SER RR C U,E,S
Subtract (Short Operands) SE SRS,RS,C U,E,S
Notes: C Condition code is set

E ‘Exponent—overflow exception

F Floating point divide exception

0 Overflow

S Significance exception

u Exponent-underflow exception

XN Output is not normalized

XN* Output is not normalized, but a true zero is written

for an input with a zero fraction.

8.7 CONDITION CODE

The results of floating point add, compare, subtract, convert, load, and midvalue
select operations are used to set the condition code. Multiplication, division, and
stores leave the condition code unchanged. The condition code can be used for
decision making by subsequent branch on condition instructions.

The condition code can be set to reflect the type of results for floating point
instructions. The states 00, 11, or 01 indicate that the result is zero, less than
zero, or greater than zero respectively. Load instructions which do not modify the
input operand will set the condition code based upon the fraction of the operand
only, thus it is possible to have a zero condition code set for a result which is
not true =zero. This interpretation is consistent since all floating point
instructions interpret a fraction =zero input as a true =zero. Note that all
arithmetic instructions always write a true zero when a fraction zero is
encountered, so this condition can only occur for loads. State 10 is never set by
floating point operations. The compare instruction indicates the relative
arithmetic magnitude of the first operand (R1) and the second operand (called ¢ 2)
(see Figure 8-3).

00 1 01
Add S/L zero <zero > zero
Compare S/L (R1) = (¢2) (R1)<(¢2) (R1)> (¢2)
.Load S/L zero < zero > zero
Subtract S/L zero < zero > zero
Converts zero < zero > zero
Mid Value Select within above below

Figure 8-3. Condition Code Setting for Floating Point Arithmetic
INDICATORS:

The overflow and carry indicators are not changed by floating point instructions.

8.8 FLOATING POINT ARITHMETIC EXCEPTIONS

Invalid operation codes, operand designations, data, or results cause a program
interruption. When the interruption occurs, the current PSW is stored as an old
PSW, and a new PSW is obtained. The interruption code in the old PSW identifies the
cause of the interruption. The following exceptions cause a program interruption in
floating point arithmetic.

Protection: Each halfword in main storage can be protected with a storage
protection bit. The operation is terminated on a store violation.

Addressing: An address designates an operand lo:cation outside the available storage
for the installed system. In most cases, the operation is terminated. The result
data and the condition code, if affected, are unpredictable and should not be used

for further computation.

Exponent Overflow: The result exponent in addition, subtraction, multiplication, or
division exceeds 127 (16¢3), and the result fraction is not zero. The, operation is
terminated without changing the operands, and a program interrupt occurs.

Exponent Underflow: The result exponent in addition, subtraction, multiplication,
or division is less than zero (16—%%4), and the result fraction is not zero. The
operation is terminated, and a program interruption occurs if the exponent-underflow

mask bit (PSW bit 22) is one.

The setting of the exponent-underflow mask also affects the result of the operation.
When the mask bit is zero, the sign, exponent, and fraction are set to zero, thus
making the result a true zero and no interrupt occurs. When the mask bit is one,
the operation is terminated without changing the operands, and the interrupt is
taken.

Significance: The result fraction of an addition or subtraction results in a zero
fraction. A program interruption occurs if the significance mask bit (PSW bit 23)
is one. The mask bit does not affect the result of the operation. A significance
interrupt will result in a true zero answer with 00 condition code set.

Floating Point Divide: When division by an input with a zero fraction is attempted,
theAdivision is suppressed. The condition code and data in registers and storage
remain unchanged.

8.9 ADD (LONG OPERANDS)

Op R1 R2
oj1jojrgo} | | jryrqrjof1] | |
0 4 5 7 8 11 1213 18
Mnemonic Format
AEDR R1, R2
Op R1 a B2 Address Specification
ofjrjojrjof | | qrqrpgrg | I T T I O I O O
0 4 5 7 8 1112 1314 15 16 31
aM Displacement
0
I I A T O O I I B
- 168 31
1 X ; | Displacement
L | I I O O O B
16 31
AM Mnemonic Format
Extended: 0 AED R1, D2 (B2)
Indexed: 1 . AED [@] [#] R1, D2 (X2, B2)
DESCRIPTION:

The second operand is added to the first operand, and the normalized sum is placed

in the first operand location.

is added with the contents of the floating point
The normalized result is placed into

The long 64-bit second operand
register pair specified by register RI1.
floating point registar‘pair specified by R1l.
Addition of two floating point numbers consists of a characteristic comparison and a
fraction addition. The characteristics of the two operands are compared, and the
fraction with the smaller characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift, until the two characteristics
agree. The fractions are then added algebraically to form an intermediate sum. If
a high-order carry occurs, the intermediate sum is right-shifted one hexadecimal
digit, and the characteristic is increased by one. If this increase causes a
characteristic overflow, an exponent-overflow exception is signaled, and a program
interruption occurs.

The long intermediate sum consists of 15 hexadecimal digits, possible guard digits,
and a possible carry.

After the addition, the intermediate sum is left-shifted as necessary to form a
normalized fraction; vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and the corresponding mask
bit is one, a program interruption occurs and the operands remain unchanged (no
result is written). If the mask bit is zero, a true zero is written as the result
and no interrupt occurs.

When the intermediate sum is zero and the significance mask bit is one, a
significance exception exists, and a program interruption takes place. Regardless
of the sign of the significance bit, a true zero is written as the operations
result. Exponent underflow does not occur for a zero fraction.

The sign of the sum is derived by the rules of algebra. The sign of a sum with zero
result fraction is always positive.

RESULTING CONDITION CODE:
00 Result fraction is zero

11 Result is less than zero
01 Result is greater than zero.

PROGRAM INTERRUPTS:
Significance
Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the
value of the sum. ‘

8.10 ADD (SHORT OPERANDS)

Op . R1 R2
oj1joj1jof | | J1j1]1tofo) | |
0 4 5 7 8 111213 15
Mnemonic Format
AER R1,R2.
Op R1 Disp® B2 ° Displacements of the form
0 .4 5§ 7 8 13 14 15
Mnemonic Format
AE R1,D2(B2)
. A
Op R1 Ml 82 Address Specification
ol 1joj1jof | | f1l1]1l1]0O | I N T T N O I O T O
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format Disp
Extended: 0 AE R1,02(B2) 1] NN
Indexed: 1 AE (@] [#] R1,D2(X2,82) X 1K Disp
[1 |4 Lt g

DESCRIPTION:

The short second operand is added to the short first operand, and the six digit
normalized sum is placed in the first operand location.

Addition of two floating point numbers consists of a characteristic comparison and a
fraction addition. The characteristics of the two operands are compared, and the
fraction with the smaller characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift, until the two characteristics
agree. The fractions are then added algebraically to form an intermediate sum. If
an overflow carry occurs, the intermediate sum is right-shifted one digit, and the
characteristic is increased by one. If this increase causes a characteristic
overflow, and exponent-overflow exception is signaled, and a program interruption
occurs. v

The short intermediate sum consists of seven hexadecimal digits and a possible
carry. The low-order digits are guard digits retained from the fraction which is
shifted right. The guard digits participate in the fraction addition. The guard
digits are zero if no shift occurs.

‘After the addition, the intermediate sum is left-shifted as necessary to form a

normalized fraction, vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shi ft.

If normalization causes the characteristic to undertlow and the corresponding mask
bit is one, a program interruption occurs and the operands remain unchanged (no
result is written). If the mask bit is zero, a true zero is written as the result

and no interrupt occurs.

When the intermediate sum is zero and the significance mask bit is one, a
significance exception exists, and a program interruption takes place. Regardless
of the setting of the significance bit, a true zero is written as the operation
result. Exponent underflow does not occur for a zero fraction.)

The sign of the sum is derived by the rules of algebra. The sign of a sum with zero

result fraction is always positive.
RESULTING CONDITION CODE:

00 Result fraction is zero
11 Result is less than zero
01 Result is greater than zero

PROGRAM INTERRUPTS:

Significance
Exponent Overflow
Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the

value of the sum.

8-11

8.11 COMPARE (LONG OPERANDS)

Op R1 R2
ofjojodrjaf J | Jafagrfofr] 1 |
0 4 5 7 8 1112 13 15
Mnemonic Format
CEDR R1,R2
Op R1 :n B2 Address Specification
ojojogrgry 1§ drprgrige] Lttt rrrrrrr
0 4 5 7 8 11 12 13 14 15 16 ’ 31
AOM Displacement
Lidtrr ittt
16 31
]
1 X All Displacement
L1 L1 11t 11111
16 31
AM Mnemonic Format
Extended: 0 CED R1,02(B2)
Indexed: 1 CED[@] [# R1,D2(x2,82)
DESCRIPTION:

The long first operand is compared with the long second operand, and the condition
code indicates the result. '

The long second operand is compared with the contents of the floating point register
pair specified by register R1. Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. An equality is established by
following the rules for normalized floating point subtraction. Neither oper-
and is changed as a result of the operation.

Exponent overflow, exponent underflow, or loss significance canhot occur.
RESULTING CONDITION CODE:

00 Operands are equal

11 First operand is less than the second operand

01 First operand is greater than the second operand

PROGRAMMING NOTES:

Numbers with zero _fraction compare equal evan when they differ in sign or
characteristic.

ANOMALY NOTE:

False indications of equality can occur in some cases when the
fractional portion of the operands differ by x'80 0000' after

prealignment.

Prealignment shifts the fraction, of the operand with the smaller
exponent, right a number of hex digits equal to the absolute value of
the difference between the two exponents. The fraction being shifted is
left filled with zeroes. After prealignment, the comparison is based on
64 fractional bits (right filled with zeroes) and a possible guard bit.
Note that unnormalized numbers are not first normalized and are compared

in the same manner as normalized numbers.

Examples of failing cases (return false indications of equality)

Operand 1: 423F FFFF 0000 1234

Operand 2: 423F FFFF 0080 1234

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 11 (OP1l < OP2)

Operand 1: BEFF FFFF FBO07 6890

Operand 2: BF10 0000 0030 7689

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 01 (OP1l > OP2)

Operand 1: 4010 0000 0000 1234

Operand 2: 3FFF FFFF F801 2340

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 01 (OP1 > OP2)

8§-12a

(This page intentionally left blank)

8-12b

' 8.12 COMPARE (SHORT OPERANDS)

Op R1 R2
oj1jojoqrf | | Jyryrjofg |1
0 4 5 7 8 11 1213 15
Mnemonic Format
CER R1, R2
Op R1 a 82 Address Specification
0]1]0jo|1 L ppppg | I I T O I I O I O O O
] 4 5 78 11 1213 14 15 16 ‘ 31
M
Es' Displacement
I N T O O
16 i 31
1 X ; | Displacement
L1 I N T O O O |
16 kil
AM Mnemonic Format '
Extended: 0 CE R1,D2 (B2
Indexed: 1 CE (@I[#] R1,D2(X2,82
DESCRIPTION:

The first operand is compared with the second operand, and the condition code
indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and exponent of
each number. In short-precision, the low-order halves of the floating point
registers are ignored. An equality is established by following the rules for
normalized floating point subtraction. When the intermediate sum, including a
possible guard digit, is zero, the operands are equal. Neither operand is changed
as a result of the operation.

Exponent overflow, exponent underflow, or loss significance cannot occur.
RESULTING CONDITION CODE:

00 Operands are equal

11 First operand is less than the second operand

01 First operand is greater than the second operand

PROGRAMMING NOTES:

Numbers with =zero fraction compare equal even when they differ in sign or
characteristic.

8.13 CONVERT TO FIXED POINT

Op R1 R2
ofojqrjijr} | | Jrjijrjojoj | |
0 45 78 11 1213 1§

Mnemonic Format
CVFX R1, R2

DESCRIPTION:

The second operand located in floating point register R2, is a normalized short
32-bit floating point operand using the sign magni tude floating point

representation. The second operand 1is converted to fixed point by an
unnormalization operation in order to have its characteristic equal to a hexadecimal
44 (1000100 (2)). The number is then converted to a twos complement representation

and placed into general register R1 (truncated if necessary).

A convert overflow will occur if a floating point number is outside the following
range:

.7FFFFF X 16E04(16) 2 N 2 -.800000 X 16E04(16)
RESULTING CONDITION CODE:
00 Bits 0 through 15 of the result in general register Rl are zero
11 Bits 0 through 15 of the result in general register Rl are negative
01 Bits 0 through 15 of the result in general register Rl are positive
INDICATORS:
The overflow and carry indicators are not cHanged.
. PROGRAM INTERRUPTS:
Convert overfl-..

PROGRAMMING NOTES:

Refer to the CONVERT TO FLOATING instruction.

3-14

8.14 CONVERT TO FLOATING POINT

Op R1 R2
ofogqrrgty] L qrprprgofrg |
0 4 5 7 8 11 1213 15

Mnemonic Format
CVFL R1, R2

DESCRIPTION:

The second operand is a 32-bit twos complement number with its binary point
considered to be between bits 15 and 16. It is converted to sign magnitude floating
point representation and placed into floating point register R1.

First, the sign bit of the fixed point number is placed into the sign bit of the
intermediate result shown below. Then, bits 0 through 31 of the fixed point number
are converted from +twos complement representation to the magnitude of a
sign-magnitude represention, and then placed into bits 8 through 39 of the
intermediate result. The characteristic in bits 1 through 7 of the intermediate
result is set to (1000100 (2)). Finally, the resulting intermediate number is
normalized and only a short floating point representation (bits 0 through 31) is
developed and placed into the floating point register R1.

RESULTING CONDITION CODE:
00 The floating point result is zero.
11 The floating point result is negative
01 The floating point result is positive (>0)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.
PROGRAM INTERRUPTS:
None

PROGRAMMING NOTES:

Unlike earlier versions of this machine, no significance interrupt is issued for
conversion of fixed point zero to floating point true zero.

Fixed Point Halfword Operand (R2)

s Integer Fraction
LIttt N

0 "1~ 15 16 -3

{ Floating Point Number N -

S| Characteristic Integer (Fraction ? L l} ‘
1jojojojtjoiol | 11 1111 Lt 1] opjojojojo

01 7889 23t34 3940 63

Intermediate Result Before Normalization Binary Point

8.15 DIVIDE (LONG OPERANDS)

Op R1 R2
0jo0jojtjof | g Jrynoy g
0 4 5 7 8 11 1213 15
Mnemonic Format
DEDR R1,R2
Op R1 | c 82 Address Specification
ojojojrjo) | | frrprgr)] I 1 I I O O R
0 4 5 7 8 1112 13 1415 16 31
AM Displacement
0
I I O O O
16 . 31
1 X A | Displacement
| 1 | B
16 31
AM Mnemonic Format
Extended: 0 DED R1, D2 (B2)
Indexed: 1 DED (@] [#] R1, D2 (X2, B2)

DESCRIPTION:

The dividend (the long first operand) is divided by the divisor "(the long second
operand) and replaced by the quotient. No remainder is preserved.

-

The first operand is located in bits 0 through 63 of the pair of floating point
registers specified by R1. The first operand is divided by the divisor, another
long floating point operand, and the quotient replaces bits 0 through 63 of the pair
of floating point registers specified by Rl1.

A floating point division consists of a characteristic subtraction and a fraction
division. The difference between the dividend and divisor characteristics plus 64,
is used as an intermediate quotient characteristic. The sign of the quotient is
determined by the rules of algebra.

All dividend fraction digits participate in forming the quotient, even if the
normalized dividend fraction is larger than the normalized divisor fraction. The
quotient fraction is truncated to 56 bits.

A program interruption for exponent overflow occurs when the Ffinal quotient

characteristic exceeds- 127 and the operation is terminated, without changing the
operands.

" 8-16

A program interruption for exponent underflow is possible if the final
quotient characteristic is less than zero. If the corresponding mask
bit i1is one a program interruption occurs and the operands remain
unchanged (no result is written). If the mask bit is zero, a true zero
is written as the result and no interrupt occurs. Underflow 1s not
signaled for the intermediate quotient or for the operand
characteristics during prenormalization.

When division by a zero divisor 1s attempted, the operation is
suppressed. The dividend remains unchanged, and a program interruption
for floating point divide exception occurs. When the dividend is a true
zero, the gquotient fraction will be zero. The gquotient sign and
characteristic are made zero, yielding a true zero result without taking
the program interruptions for exponent underflow and exponent overflow.
The program interruption for significance is never taken for division.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:
Exponent Overflow
Exponent Underflow

Floating Point Divide Exception

PROGRAMMING NOTES:

The divide instruction interrupt hierarchy for both 1long and short
operands is given in the diagram below:

START

1

. Floating Point Divide Excepuon

{divisor is true zero or fraction is zero)
. Coge C
2
Exponent Underflow
Exponent Overflow (final Quotient) lNoctor:: sgked)
o Code 8
Good Divide

ANOMALY NOTE:

Under certain conditions, the accuracy of the gquotient is limited to 29
fractional bits (counting 1 to 56). Since it 4is not feasible to
characterize these conditions, the long divide instruction should not be

used if more than 29 bits of precision are required.

8-17

8.16 DIVIDE (SHORT OPERANDS)

Op R1 R2
ojryrjoj) § | fuyrgrjojol ||
0 4 5 7 8 111213 185
Mnemonic Format
DER R1,R2
Op R1 Disp® B2 * Displacements of the form
of1 1 101 11 N | | 111XXX are not valid.
0 4 5 7 8 1314 15
Mnemonic Format
DE R1,D02(B2)
: Op R1 a B2 Address Specification
of1J1joj1f | | J1y114141jo | I I O I I O I I O
0 4 5 7 8 1112131415 16 31
. AM Mnemonic Format .
Extended: 0 OE R1,02(82) Disp
L1 1 | I I I O L O O O O
Indexed: 1 DE (@] [#] R1,02(X2,82) X Al Disp
| S I O O I O

DESCRIPTION:

The dividend (the short first operand) is divided by the divisor (the short second
operand) and replaced by the quotient. No remainder is preserved.

A floating point division consists of a characteristic subtraction and a fraction

The difference between the dividend and divisor characteristics plus 64

division.
The sign of the quotient is

is used as an intermediate quotient characteristic.
determined by the rules of algebra.

All dividend fraction digits participate in forming the quotient, even if the
normalized dividend fraction is larger than the normalized divisor fraction. The

quotient fraction is truncated to 2% bits.

overflow occurs when the final quotient

A program interruption for exponent
without changing the

characteristiec exceeds 127. The operation is terminated,
operand.

interruption for exponent underflow is possible if the final quotient

If the corresponding mask bit is one a program
If the

A program
characteristic is less than zero.
interruption occurs and the operands remain unchanged (no result written).

8-138

mask hit is zero, a true zelo is written as the result and no interrupt occurs.

Underflow is. not signaled for the intermediate quotient or for the operand
characteristics during prenormalization.

When division by a zero divisor is attempted, the operation is suppressed. The
dividend remains unchanged, and a program interruption for floating point divide
exception occurs. When the dividend is a true zero, the quotient fraction will be
zero. The quotient sign and characteristic are made zero, vielding a true zero
result without taking the program interruptions for exponent underflow and exponent
overflow. The program interruption for significance is never taken for division.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:
Exponent Overflow

Exponent Underflow
Floating Point Divide Exception

3-19

8.17 LOAD (LONG OPERANDS)

Op R1 I\AA B2 Address Specification
Ofvyugvy) ¢ gy] LIttt
0 4 5 7 8 111213 1415 16 31
%?' Displacement
HEENEEEEEEEENE
16 31
1 X A | Displacement
L1 | O O O O R |
16 31
AM Mnemonic Format
Extended: 0 LED R1, D2 (B2)
Indexed: 1 . LED [@] [#] R1, D2 (X2, B2)
DESCRIPTION:

The long second operand is placed in the long first operand register. The second
operand is not changed.

First, bits 0 through 31 of the doubleword main storage operand are loaded into
floating point register Rl1. Then, bits 32 through 63 of the doubleword main storage
operand ara loaded into floating point register (R1+001)mod8. Exponent overflouw,
exponent underflow, or lost significance cannot occur.

RESULTING CONDITION CODE:

00 The second operand has a zero fraction (not necessarily true
Zero operand)

11 The second operand is negative

01 The second operand is positive (>0)

e

o

8.18 LOAD (SHORT OPERANDS)

Op R1 R2
ofrjrjtyrl | | fapryrqojof | |
0 4 5 7 8 11 12 13 15
Mnemonic Format
1,
Op R1 Disp* 82 * Displacements of the form
0 4 5 7 8 13 14 15
Mnemonic Format
LE R1,D02(82)
Op R1 »a 82 . Address Specification
ofr iyt | f1rprpprfe | I
0 45 7 8 1112131415 16 A
AM Mnemonic Format Disp
Extended: 0 LE R1,D2(B2)
| | O I I O
Indexed: 1 LE (@] (#] R1,D2(X2,82) 11 Disp
| 1A LI Lt
DESCRIPTION:

The long second operand is placed in floating point register R1.
is not changed. The overflow, underflow, and

this instruction.

RESULTING CONDITION CODE:

carry indicators are not

The second operand

changed by

00 The second operand has a zero fraction (not necessarily true zZero operand)
11 The second operand is negative
01 The second operand is positive (>0)

8.19 LOAD COMPLEMENT (SHORT OPERANDS)

Op “R1 R2

ofviafrgry 1 jajrjrjodr} | |
0 4 5 7 8 12 13 15

i Format

LECR R1,R2

DESCRIPTION:

The arithmetic complement of the fullword second operand replaces the contents of
floating point register R1. The sign bit of the second operand is inverted, while
the characteristic, the fraction, and register (R1+001)mod8 are not changed.
Indicators are unchanged by this instruction.

RESULTING CONDITION CODE:

00 The result is a true zero
11 The result is negative
0l The result is positive (>0)

PROGRAMMING NOTES:

Invoking this instruction on an operand with a fraction zero will result in a true
zero wWwith a condition code of 00. That is, an operand with =zero fraction will not
be complemented but will be loaded as a true zero regardless of characteristic.

8.20 LOAD FIXED REGISTER

Op R1 R2
ojojrqol 1 Jrprgryofr] g g
0 4 5 7 8 11 1213 15

Mnemonic Format
LFXR R1, R2

DESCRIPTION:

The fullword contents of the floating point register specified by R2 are loaded into
the general register specified by R1l.

RESULTING CONDITION CODE:
The code is ndt changed.
INDICATORS:

The overflow and carry indicators are not changed by this instruction.

T,
y
£

P i
y

8.21 LOAD FLOATING IMMEDIATE

0]
Op R1 P OPX
X
110j0101 v} | Jrgvqrqgofi o1 |
0 4 5 7 8 11 1213 15
Monemonic Format
LFLI R1, Value

DESCRIPTION:

A floating point immediate value .is loaded into the floating point register
specified by R1.

The immediate values are 0..1..2..3.;4..5..6.,7.;8.;9.,10.’11., 12.)13-'14.’ and 15.

OPX (bits 12,13,14,15) Immediate Values --> R1

(hex) : Chex)

0000 0000 (TRUE ZERO)
4110 0000
4120 0000
4130 0000
4140 0000
4150 0000
4160 0000
6170 0000
4180 0000
6190 0000
41A0 0000
4$1B0 0000
41C0 0000
4$1D0 0000
41E0 0000
41F0 0000

TMTMOSCW»OVOdOOTUPDPUNRO

RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

8.22 LOAD FLOATING REGISTER

Op R1 R2
0jogrjoyr] | g fryprgrgoftf g g
0 4 5 7 8 111213 15

Mnemonic Format
LFLR R1, R2

DESCRIPTION:

The fullword contents of the general register

floating point register specified by R1.

RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

specified by R2 are

loaded into the

The overflow and carry indicators are not changed by this instruction.

8.23 MIDVALUE SELECT (SHORT 0©ZRANDS)

Op R1 Al 82 Address Specification
ojijrjoqel | | Jrprgrgpge] LIttt trtrred
0 4 5 7 8 11 1213 1415 16 . 31

%# Displacement
Lttt rrretred
16 31
1 . X k | Eﬁsnmannnt'
| 1 I A T I I O O O |
16 1819 20 21 31
AM Mnemonic Format
Extended: 0 MVS R1,D2(B2)
Indexed: 1 MVS (@) (# R1, D2 (X2, 82)
DESCRIPTION:

The floating point registers specified by Rl and (R1+001)mod8 each contain a short
(8/24) floating point operand. The third short floating point operand is located in
the main storage effective address. The three operands are compared, and the
midvalue operand is selected such that it is less than or equal to the maximum value
operand. The normalized midvalue operand is then placed in the floating point
register specified by R1. Both the main storage operand and the contents of
Register (R1+001)mod8 are not changed.

RESULTING CONDITION CODE:

-The condition code is set as a result of executing this instruction, but its value
is, in general, meaningless when this instruction is used for midvalue selection.
However, see the Programming Note for condition code settings when this instruction
is used as a limiter.

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction can also be used as a limiter. The upper limit must be placed in
(R1+1)mod8; the lower limit must be placed in the main store location. The input
value to be tested must be placed in R1. The condition code will reflezt the result
of the instruction and, if the input value is outside the limit values, the
appropriate limit value will be placed in R1.

When this instruction is used as a limiter, the condition code will be set as
follows:

8-26

00 Within Limits: Lower Limit (Main Storage Operand) £
Operand (Initial Contents of Register
R1) £ Upper Limit (Contents of Register
(R1+1)mod8. (R1 is midvalue)

01 Above Upper Limit: Initial Rl Operand > Upper Limit
(R1+1)mod8. (Rl is midvalue: originated

in (R1+1)mod8)

11 Below Lower Limit: Initial Rl Operand < Lower Limit (Main
Storage Operand): (main storage operand
is midvalue)

The programner is responsible to ensure that the upper limit is not equal to the
lower limit. If these conditions are inadvertently set up, the resulting condition

code will be meaningless.

PROGRAM INTERRUPTS:

Underflomw = +he output of the MVS instruction, if normalized, could cause an
exponent underflow.

PN

P

8.24 MULTIPLY (LONG OPERANDS)

Op R1 R2
ojojifrjol | | Jrjrqrgofi] | |
0 4 5 7 8 11 1213 15

Mnemonic Format

MEDR R1, R2
Op R1 a B2 Address Specification
0jojijrjof | | frqrqaprd | I 1 I O O O O R
0 4 5 7 8 11 1213 1415 16- 31
AM Displacement
0
LIttt
16 31
1 X L | Displacement
L1 I I O I O O e |
16 31
AM Mnemonic Format
Extended: 0 MED R1, D2 (B2)
Indexed: 1 MED (@] [#] R1, D2 (X2, B2)
DESCRIPTION:

The normalized product of multiplier (the long second operand) and multiplicand (the
long first operand) replaces the multiplicand.

The first operand is located in bits 0 through 63 of the pair of floating point
registers specified by register R1l. This operand is multiplied by the second
operand. For the RR format, the second operand is located in bits 0 through 63 of
the pair of floating point registers specified by R2. For the RS format, the second
operand is located in bits 0 through 63 of the main storage word pair. The extended
product replaces bits 0 through 63 of the pair of floating point registers specified
by R1 and (R1+001)mod8.

The multiplication of +two floating point numbers consists of a characteristic
addition and a fraction multiplication. Fraction multiplication is accomplished by
multiplying the three most significant <fullword partial sum pairs and adding the
results (to 68 bits), followed by normalization and truncation to 56 bits. The sum
of the characteristic less 64 is used as the characteristic of an intermediate
product.

The sign of the product is determined by the rules of algebra.
The product fraction is normalized by postnormalizing the intermediate product, if
necessary, then truncating the product to 56 bits. The intermediate product

characteristic is reduced by the number of left shifts.

8-28

Exponent overflow is possible if the final product characteristic exceeds 127. The
operation is terminated, and a program interruption occurs without changing the
operands. The overflow exception does not occur for an intermediate product
characteristic exceeding 127, when the final characteristic is brought within range

because of normalization.

Exponent underflow is possible if the final product characteristic is less than
zero. If the floating point exponent underflow mask is a one, a program
interruption occurs and operands remain unchanged (no result written). If the mask
bit is zero, the result is made a true zero and no interrupt occurs.

When all digits of the intermediate product fraction are zero, the product sign and
characteristic are made =zero, yielding a true zero result. No interruption for

exponent underflow or exponent overflow can occur when the result fraction is zero.
The program interruption for lost significance is never taken for multiplication.

RESULTING CONDITION CODE:
The code is not changed.
PROGRAM INTERRUPTS:

Exponent Overflow
Exponent Underflow

PROGRAMMING NOTES:

When either the multiplicand or multimlier is a true zero, the result is normally
forced to a true zero withuut requiring the hardware to enter the longer multiply

algorithm.

Interchanging the two operands will not affect the value of the product.

8.25 MULTIPLY (SHORT OPERANDS)

Op R1 ' R2
ofrjrjojo] | | frqry1jojo} | |
0 4 5 7 8 1112 13 15
Mnemonic Format
MER R1,R2
Op R1 Disp® 82 ° Displacements of the form
1XXX lid.
ol 1(1] 0] 0 | ‘ l |1] | | 1 are\not valid
0 4 5 7 8 1314 15
Mnemonic Format
R1,D2(B2)
Op © R1 :A 82 Address Specification
oftrjrjofol | [llrytl1jo | I N A N A |
0 4 5 7 8 11121314 15 16 31
AM Mnemonic Format Di
Extended: 0 . ME R1,D2.(B2) =
1 1 1 I A I O O I |
L1 1A Ll

DESCRIPTION:

The normalized product of multiplier (the short second operand) and multiplicand
(the short first operand) replaces the multiplicand.

The multiplication of two flou-.ine point numbers consists of a characteristic
addition and a fraction multiplicatiaon. The sum of the characteristics less 64 is
used as the characteristic of an intermediate product. The sign of the product is
determined by the rules of algebra.

The product fraction 1is normalized by postnormalizing the intermediate product, if
necessary. The intermediate product characteristic is reduced by the number of left
shifts. For short operands (six-digit fractions), the product fraction has the full
14 digits of the 1long format with the two low-order fraction digits accordingly
always zero.

Exponent overflow occurs if the final product characteristic exceeds 127. The
operation is terminated, and a program interruption occurs without changing the
operands. The overflow exception does not occur for an intermediate product

characteristic exceeding 127, when the final characteristic is brought within range
because of normalization.

Exponent underflow is possible if the final product characteristic is less than
zero. If the floating point exponent underflow mask is a one, a program interrupt
occurs and the operands are unchanged (no result written). 1If the mask bit is zero,
the result is made a true zero and no interruption occurs.

When all 14 digits of the intermediate product ‘fraction are zero, the product sign
and characteristic are made zero, vielding a true zero result. No .interruption for
exponent underflow or exponent overflow can occur when the result fraction is zero.
The program interruption for lost significance is never taken for multiplication.

If Rl is even, the least significant part of the product fraction replaces the
contents of floating point register R1+001. The most significant part of the
intermediate product fraction replaces the contents of floating point register R1.

RESULTING CONDITION CODE:
The code is not changed.
PROGRAM INTERRUPTS:

Exponent Overflow
Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point multiplication does not affect
the value of the product.

When either the multiplicand or multiplier is a true zero, the result is normally
forced to a true zero without requiring the hardware to enter the longer multiply
algorithm.

Notice that the MULTIPLY (short) instruction uses two registers for its result if R1
was even. This allows the programmer to use the additional precision without going
to the extended form of the MULTIPLY. If Rl was odd, one register is used for the
result (32 bit product).

8.26 SUBTRACT (LONG OPERANDS)
Op R1 R2
oftfofafa] | | fafagajof] | |
0 4 § 7 8 1112 13 15
Mnemonic Format
SEDR R1, R2
A
Op R1 M lB2 Address Specification
ofrfofefa} 11 Jrfr] I I T 1 T S O A O O
0 4 5 7 8 1112 1314 15 16 31
AM Displacement
0 Lttt
16 31
|
1 X Al Displacement
L1 I I I O I O
16 31
AM Mnemonic Format
Extended: 0 SED R1, D2 (B2)
Indexed: 1 SED [@] [#] R1, D2 (X2, B2)
DESCRIPTION:
The long second operand is subtracted from the long first operand, and the

normalized difference is placed in the first operand location.

is subtracted from the contents of floating point
The normalized result

The long 64-bit second operand
register pairs specified by the register Rl and (R1+1)modS8.
is placed into floating point registers Rl and (R1+1)modS8.

The SUBTRACT (long operand) is similar to ADD (long operand), except that the sign
of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a
difference with zero result fraction is always positive.

RESULTING CONDITION CODE: PROGRAM INTERRUPTS:

Significance

00 Result is true zero
11 Result is less than zero Exponent Overflow
01 Result is greater than zero Exponent Underflow

PROGRAMMING NOTES:

The technique used to clear a register by subtracting a floating point register from
itself will work even though unnormalized numbers are used in the subtract
operation. The result will be a true zero. '

3-32"

8.27 SUBTRACT (SHORT OPERANDS)

Op R1 R2
ofrjogrgrl | {ry1yrjojof | |
0 4 5 7 8 11 1213 15

Mnemonic Format
SER R1,R2

Op R1 Disp® B2 * Displacements of the form
. 111XXX lid.
gty ety ére not valid
0 4 5 7 8 13 14 15
Mnemonic Format
R1,02(82)
. Op R1 a B2 Address Specification
011 10111 | L 111 4111]o | LUt rr1y
0 4 5 7 8 11 1213 14 15 16
e AM Mnemonic Format Disp
ded:
xtended 0 SE R1,02(82) l l ' { l l l l 1 |] l]
Indexed: 1 SE (@] =] R1,D2(X2,B2) X ar Disp
| 1A [I O I O I
DESCRIPTION:

The short second operand is subtracted from the short first operand, and the
normalized difference is placed in the first operand location.

The SUBTRACT (short operands) is similar to ADD (short operands), except that the
sign of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a
difference with zero result fraction is always positive.

RESULTING CONDITION CODE: PROGRAM INTERRUPTS:
00 Result is true zero Significance
11 Result is less than zero Exponent Overflow
01 Result is greater than =zero Exponent Underflow

PROGRAMMING NOTES:
The technique used to clear a register by subtracting a floating point register from

itself will work even though wunnormalized numbers are used in- the subtract
operation. The result will be a true zero.

8-33

8.28 STORE (LONG OPERANDS)
A
Op R1 M |B2 Address Specification
oot Jafal | | Jalala] afs] I N I O O I O
0 4 5 7 8 11 12131415 16 31
AM Displacement
0 LIttty
16 31
|
1 X All Displacement
L1 |
16 31
AM Mnemonic Format
Extended: 0 STED R1, D2 (B2)
Indexed: 1 STED [@][#] R1,D2(X2 B2
DESCRIPTION:
The long first operand is stored at the long second operand location. The first

operand is not changed.

The first operand is located in the pair of floating point registers specified by
register R1. First, bits 0 through 31 of floating point register Rl arvc stored in
the fullword specified by the second operand fullword address. Bits 0 throu-sh 31 of
floating point register (R1+1)mod8 are stored intz the second fullword oy the
doubleword storage area starting with the second operand fullword address. The
contents of register R1 and (R1 + 1)mod 8 are not changed.

RESULTING CONDITION CODE:

The code is not changed.

8-34

8.29 STORE (SHORT OPERANDS)

Op R1 Disp* B2 * Displacements of the form
010 [1]1]1 [] [1] (] | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemanic Format
R1,D2(B2)
Op R1 a B2 Address Specification
olodajij1] | | f1t11y1do | LAttt
0 4 5 7 8 1112 13 14 15 16 31
AM Mnemonic Format Disp
Extended: 0 STE R1,D2(B2
xtendec 2(82) L1 RN EENEE
Indexed: 1 sTEl@] (=] R1,02(x2.82) x il Disp
L1]A L1

DESCRIPTION:

The contents of floating point register Rl are stored at the second operand
location. The contents of Rl are not changed. The overflow and carry indicators
are not changed by this instruction.

RESULTING CONDITION CODE:

The code is not changed.

(This page intentionally left blank)

9.0 SPECIAL OPERATIONS

This section desecribes the special instructions. These instructions ﬁake possible
the use of efficient pseudo subroutines, permit the specification of storage
protection, perform status switching, control I/0, and loading and storing the Data

Sector Register (DSE).

9.1 DIAGNOSE (DETECT)

o | Ri ol B2 Address Specification
111jo0jojof | frpagagr | LUttt rt
0 4 5 7 8 11121314 1516 31

S—M Displacement
Lttt
16 31
1 X 111 Displacement
L | I I I O O R |
16 181920 21 31
AM Mnemonic Format
Extended: 0 DIAG R1,D2(B2)
Indexed: 1 DIAG(@)(#) R1,D2(X2,B2)

DESCRIPTION:

A 16-bit effective address is developed in the normal manner without expanding to 19
bits. The effective address uniquely selects one of several special microprogram
routines. These routines are used to perform built-in diagnostic functions to
verify the proper functioning of the CPU hardware and to detect faulty components.
The particular diagnostic operations performed are defined in Section 15.

The instruction is not intended for normal program usage. This is a privileged
operation and can only be executed when the CPU is in the Supervisor state.

RESULTING CONDITION CODE:
00 The diagnostic result is "pass™
11 The diagnostic result is "fail"™
01 =--- (impossiblg)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

AUTOMATIC INDEX ALIGNMENT:

This instruction aligns the index value assuming a halfword main storage operand.

PROGRAM CHECK EXCEPTIONS:
Privileged Instruction

Address Specification - Address Violation for a fullword indirect
address pointer.

Address Specification - Nonexistent Address for an indirect address
pointer.

PROGRAMMING NOTES:

This instruction is not intended for generzl programming use; it is designed for the
diagnostic programmer. Every programmer desiring to use the Diagnose instruction
should be thoroughly familiar with the contents of the Diagnostic Function Appendix.
Unexpected results can occur if this instruction is improperly used.

9-3

9.2 INSERT STORAGE PROTECT BITS

. Op M1 a 82 Address Specification
ANARCARE N N RIRNINEER | LIttt
0 4 § 7 8 1112 13 14 15 16) 31
Ah_/l_ Mnemonic Format

Extended: 0 ISPB M1,D2(B2) Disp

| I S T O O O O |
Indexed: 1 ISPB (@] [#] M1,D2(X2,B2) X 1] Disp

[1 [A |

DESCRIPTION:

Bits 5 through 7, the M1 field, are decoded to set or reset the protection bit
associated with each halfword in main-storage as specified by the EA. The contents
of the specified location, however, are not changed.

The following defines the combinations of the M1 field and the corresponding result:

Ml Field Result

000 Reset the storage protection bits for the halfword second operand.

001 Reset the storage protection bits for both halfwords in the fullword
second operand.

010 Set the storage protection bits for the halfword second operand.

011 Set the storage protection bits for both halfwords in the fullword
second operand.

100 Illegal

101 Illegal

110 Illegal

111 Illegal

This is a privileged operation and can only be executed when the CPU is in the
Supervisor state.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry and overflow indicators are not changed by this instruction.
PROGRAM INTERRUPTS:

Illegal operation
Privileged instruction

9-4

PROGRAMMING NOTES:

The low-order bit in the EA is used to specify the halfword when M1 is 000 or 010.
When M1 is 001 or 011, the low-order bit of the EA should be 0 and will be ignored.

This instruction will always have halfword alignment and will be excluded from
automatic index alignment.

HARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time betueen the fetch of
the operand and store of the result. Therefore, this instruction should not be used

Wwith any memary locations that might be DMA'd into.

9-5

9.3 LOAD PROGRAM STATUS
Op oPX ,{; 82 Address Specification
AN IR CARIANANRTRIL | | L1
0 4 5 7 8 11121314 15 16
AM Mnemonic Format
€xtended: 0 W D2(82) Disp
| | I I O I O O O O
: #*
Indexed: 1 LPS(@) [#] D2(X2.82) | « oy Diso
L1 [A LU b1
DESCRIPTION:

Two fullwords starting at the location designated by the fullword operand address
replace the contents of the program status registers on the CPU, as described under
Program Status Word (Section 2, Figure 2-19).

RESULTING CONDITION CODE:

The code is set or defined by the new PSW.

INDICATORS:

The carry and overflow indicators are set or defined by the new PSW.

PROGRAM INTERRUPT

If PSW bits 19 and 20 are set, a fixed-point overflow interrupt will occur
PROGRAMMING NOTES:

This is a privileged operation and can only be executed when the CPU is in the
Supervisor state. This instruction will always have halfword index alignment and

will be excluded from automatic index alignment.

PSW bits 40 through 43 are not changed by the load operation.

p—
P

9.4 MOVE HALFWORD OPERANDS

Op R1 R2
ojryufoqry | | Jrjryrgofry 1o
0 4 5 7 8 11 1213 15

Mnemonic Format
MVH R1, R2

DESCRIPTION: .

Bits 1 through 15 of the general register specified by Rl contain the offset of the
destination address within a specified sector. When bit 0 in Rl is a one, the
destination address is determined by concatenating the DSR value in the PSW with the
offset. When bit 0 in Rl is a zero, the destination address is determined by
concatenating the value in the corresponding DSE register with the offset. Bits 16
through 31 of Rl contain a count of halfwords to be moved. Since its representation
uses a signed twos complement integer format, bit 16 (the sign bit) should be zero.
A negative count (bit 16 equals 1), or a count equal to 0, indicates no data will ba

moved.

The content of the general register specified by R2 is as follows:

Source Address . Reserved Ignored DSR

Lttt yyoioetoqoeqol joot 4oty
0 1 15 16 27 28 a

When bit 0 in R2 is zero, the source address uses an implied DSR of all zeros.
When bit 0 in R2 is one, the source address uses the DSR contained in bits 28-31.

Data (a block of contiguous halfwords) is moved a halfuword at a time from a source
whose address is determined by concatenating the value of the DSR in R2, with the
Source Address in R2, and adding to it the value of the count in bits 16 through 31
of Rl, which is decremented by one for each halfword moved. The data is moved to
the destination whose address is determined by adding the current value of the count
to the destination address. The move is completed when the count becomes zero (see

Figure 9-1).
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

9-7

IC = Instruciton Counter
S = Source Address
D = Destination
S (—Rzo-‘ls Address
D <R1 e e e -] C = Countof
- 0-15 Halfwords > 0
c R115_31 MS(X) = Contents of
Main Store
Location at X
o
c<o Yes
?
NO

R4 (low) <C +C-1
MS (D+C) <MS (S+C)

Interrupt
Pending
?

Interrupt Service

Routine Will

IC<IC1 [e——— -4 Restart This
Instruction at

l its Beginning

To Next Instruction
or Interrupt
(1 Pending)

T

Figure 9-1. Move Halfword Execution

PROGRAMMING NOTES:

As in all instructions, main store addresses (for source and
destination) must not be expected to cross 32K sector boundaries,
because this instruction will not modify the DSR/DSE. If this is ever
attempted, operands will be used from sector zero.

Because the MOVE HALFWORD instruction can execute for a long time, it
has been designed to be interruptible by all interrupts except AGE halt,
which only interrupts MOVE HALFWORD at the end of the instruction.

When MOVE HALFWORD ends prematurely due to any of the above pending
interrupts, the instruction counter will be decremented such that when
the interrupt is taken the old PSW contains the instruction address of
the move instruction. Note that the count in R1 is modified to reflect

the number of halfwords remaining to Dbe moved. This will allow
returning to the move instruction so that it can continue to be executed
from where it was interrupted. Note that the DSEs associated with

registers R4-R7 are not saved/restored by STDM/LDM instructions amnd
therefore may not be saved by standard interrupt handlers.

ANOMALY NOTE:

MOVE HALFWORD will not correctly move data when the expanded source
address is exactly one greater than the expanded destination address and
the most significant bit of R1 and R2 are not equal. To avoid this
problem, the programmer should ensure that when the source and
destination blocks overlap, the source address is not exactly one
halfword greater than the destination address.

The recommended approach when using the MVH to initialize a block of
memory is to initialize the last fullword of the block and make the
source address 2 halfwords greater than the destination address, thereby
moving fullwords instead of halfwords. This avoids the anomaly and
executes in half the time.

(This page intentionally left blank)

9.5 SET PROGRAM MASK

Py

7
1111?101 1{///%111“10 L

4 5 78 1112 13 15

Mnemonic Format

SPM R2
DESCRIPTION:

The contents of bits 16 through 23 of general registe} R2 replace the corresponding
contents of the current program status registers on the CPU as follows:

Bits 16 and 17 become the new condition code
Bit 18 becomes the new carry indicator

Bit 19 becomes the new overflow indicator
Bit 20 becomes the fixed point overflow mask
Bit 21 (reserved)

Bit 22 becomes the floating point exponent underflow mask
Bit 23 becomes the significance mask.

RESULTING CONDITION CODE:

The code is changed as defined above.

INDICATORS:

The carry, overflou, underflow, and significance indicators are changed as defined
above.

PROGRAM INTERRUPT:
If both bits 19 and 20 are set, the fixed-point overflow interrupt will occur.
PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

9-9

9.6 SET SYSTEM MASK

Op ?{//4//& a 82 Address Specification

1101010} 1 1]11]1]1]1 | Lt e trrrrrt
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format .
Extended: 0 SSM__ D2(82) _Diso
, L1 1 I O O O O
Indexed: 1 SSM(@] (#] D2(X2.82) X 11 Disp
| 1 |- | I

DESCRIPTION:

The halfword second operand replaces bits 32 to 47 of the PSW. This is a privileged
operation and can only be executed when the CPU is in the Supervisor state.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

9

10

9.7 STACK CALL

Op R1 Al 82 Address Specification
Tjrjojrjol | f1yrgrya]] LI ittt |
0 4 5 7 8 11 1213 14 1516 31
AM
0 Displacement
LI L1l t 1111 | 1
16 , 31
1 X L | Displacement
] LI i1t
16 18 1920 21 31
AM Mnemonic Format
Extended: 0 SCAL R1, D2 (B2

Indexed: 1 SCAL [@] [#] R1, D2(X2 B2)

DESCRIPTION:

This instruction for calling subroutines automatically controls saving bits 0
through 31 of the current PSW and the 8 general registers into a stack space
(frame) into main storage. When the Stack Call (SCAL) instruction is to be used,
general register Rl must contain a Stack Status Descriptor word (SSD). Likewise,
when the corresponding Stack Return (SRET) instruction is to be used to return from
the called subroutine, general register R2 must contain an SSD. The contents of the
general register containing the SSD are as follows:

LIt LI Lty
0 15 16 _ 31

First, a branch address is computed. A save area address on the stack is computed
from values in the SSD in R1 and either the associated DSE or PSW DSR, as follows:

When bit zero of the PTR is one, the stack space save area address (SA) or pointer,
which is represented by a 19-bit machine address, is determined as follows:

DSR contained in the PSW

SA bits 0 - 3

»TR bits 1-15 + INC

SA bits ¢ - 18

Note: PTR bitls 1-15 represent the offset or number of
halfuwords from the beginning of a specified sector.

When bit zero of the PIR is zero, the stack space save area address is determined as
follows:

SA bits 0 = 3 = DSE associated with the reyister containing the 5SD
SA bits 4 - 18 = PTR bits 1-15 + INC
The first two halfwords of the current PSW and the eight general-purpose registers

(GPR) are the stored in the 18 halfwords beginning at location SA. The SSD in Rl is
now updated, as follows:

PTR bit 0 is set to the old PTR bit 0 value

PTR bit 1 - 15 is set to SA bits ¢ - 18

INC is set to 18

(Note: The DSE associated with Rl is not changed.)

When updated, Rl provides the base offset address of the current stack space frame
within the specified sector.

Finally, the next instruction is taken from the branch addiass. This is essentially
a BAL instruction which provides an automatic call stack function.

PROGRAMMING NOTES:

PTR is a 16-bit address in Rl which is used to formulate the location of a
particular stack frame within a specified sector, i.e., SA (contiguous storage).
INC represents the number of halfuwords which have currently been used in the stack
beyond SA. Since its representation uses a signed twos complement integer format,
its sign bit should be zero (see Figure 9-2).

(Beginning)
5A

A
Y

A

Figure 9-2. Current STACK Status - Prior to SCAL

When SCAL is executed, the new stack save address (SA) is calculated as indicated
above, the current PSW and the eight general registers are saved in the new stack
save area pointed to by SA so *hat the stack now appears as in Figure 9-3. Then the
PTR in R1 is updated to the sum of the values in PTR + INC, and then INC is set at
18.

9-12

(Beginning)

..........

SA

Linkage
and GPR INC = 18 Halfwords
Save Area

Figure 9-3. STACK Status - Upon Completion of SCAL

The programmer is free to use additional space in the stack, by simply using Rl as a
base, and an offset which is greater than 18 (to avoid destroying the saved GPR
contents). However, this additional information will be lost if he issues another
SCAL without specifically adjusting INC in Rl to include this new space.

When SRET is executed, the first two halfwords of the PSW and the eight GPRs are
automatically loaded from the stack frame save area at location SA. Note that this
restores Rl to contain the SSD it had prior to the last SCAL, which means “hat the
stack is automatically restored to the state of Figure 9-2 (refer to STACK RETURN).
PROGRAM INTERRUPTS:

Store protection

9-13

9.8 STACK RETURN

Op M1 R2
1jojogrjof | pojrprgrqogtyoyog
0 4 5 7 8 111213 15

Mnemonic Format
SRET M1, R2

DESCRIPTION:

When SCAL is used to call a subroutine, the complementary branch instruction SRET is
used to leave the called subroutine and return to the conditions prior to the last
SCAL. This is a conditional branch instruction in the RR format which provides the
first two halfwords of the PSW, and restores the GPR registers to the same state as
existed at the time of the SCAL, (i.e., to the extent that the stack space save area
has remained unchanged).

The instruction execution first matches the M1 field against the condition code to
determine if the branch should be taken. If the branch should not be taken, the
instruction terminates at this point. The remaining description applies when the
branch should occur.

The stack frame pointer or offset within a specifiea sector, PTR, is defined by bits
0 though 15 of the general register specified by R2. (Note: This register should
be the same as the Rl register specified in the SCAL instruction.) PTR, when
concatenated with the sector specification, forms a 19-bit address which is used to
address the initial location of the current stack frame. MWhen SRET is invoked, the
two halfwords located at this location are moved into the Tirst half of the PSW,
i.e., into bits 0 through 31. Next, the 16 halfwords located at the stack frame
address + 2, are moved, in order, into the eight general-purpose registers.
Finally, instruction execution continues from the address indicated by the active
PSW.

RESULTING CONDITION CODE:

The value in the corresponding field is loaded from the stack.
INDICATORS:

The value in the corresponding field is loaded from the stack.
PROGRAMMING NOTES:

The following notes are intended to amplify and clarify the use of the stcck and
extended call facility.

Since the stack is located in main store, any area of the current stack

frame can be accessed by standard addressing techniques (i.e., using Rl as
a base). '

9-14

One of the primary purposes of the stack is automatic register saving and
restoring. Another important purpose is the allocation and deallocation
of temporary work space, a function often required for efficient use of
storage, and for reentrant programs. This latter function can be realized
by judiciously increasing the INC value in the SSD.

The total stack space (i.e., the space taken up by the total stack at any
given time) is variable. It grows and shrinks as a function of the depth
of the call tree and the amount of workspace used by the various programs.
However, in the overall data structure of the total application, there
must inevitably be a fixed limit on the amount of main store which can be
allocated to the stack. Such limit would presumably be based on eijther
statistics of usage plus a safety factor, or else on a detailed analysis
of the usage of all possible call chains. In both cases (the latter as an
error detection mechanism) it is important to have some mechanism to stop
the call chain, if through some peculiar circumstances, the stack should
exceed its allocated space. Unfortunately, there does not appear to be
any foolproof scheme. However, most such situations would be caught by
appending a few words at the end of the allocated space which have the
store protect bit on. Any attempt to store into the appended space would
result in a protection violation and interrupt.

Since the PSW and the eight general-purpose registers are automatically
restored on SRET, it is not possible to return results directly to the
calling program in the registers. Rather, the value to be returned in a
register must be stored into the appropriate slot in the general-purpose
register save area in the stack. Then, when the registers are restored,
the calling program will, in fact, find the value in the register. At the
same time, additional values can be returned to the calling program in the
work space in the stack, since the calling pirogram can access that space
by addressing relative to the base in R1 (SCAL). (There must, of course,
be an agreed-upon convention as to the specific locations in the work
space.) Note: The floating point registers are not affected by SCAL and
SRET, so variables can be passed in these registers.

9-15

9.9 SUPERVISOR CALL

Op oPX a 82 Address Specification
1]1]0]0j1]0j0f 11]1]1)1]1 | L L b v ey
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format Disp
Extended: 0 SvC D2(B2)
. L1 | LA
Indexed: 1 SvC (@] [#] D2(X2.82) X v Disp
1 1A Ll
DESCRIPTION:

This instruction causes an interruption and a program status word suwitch. As a
result of this instruction, the interrupt code stored in the old program status word
is the 16-bit effective address. This is the only way to enter the supervisor state
from the program state. The 6-bit extension (zzzz of Figure 2-18) of the 19-bit
effective address is stored in old PSW bits 40 through 43.

RESULTING CONDITION CODE:
The condition code in the stored PSW is not changed by this instruction.
INDICATORS:

The overflow and carry indicators in the stored PSW are not changed by this
instruction.

PROGRAMMING NOTES:

The new PSW sets or defines the condition code, overflow indicator, and carry
indicator as well as all other bits in the new PSW.

9.10 TEST AND SET

%
Op ///% Al 82 Address Specification
110]1 111 1kogoroq 1 1)1y 1]1 | Ll Lttt r1
0 4 5 7 8 11121314 15 16 31
AM Mnemonic Format .
Extended: 0 TS D2(82) Disp
| 1 | R
Indexed: 1 TS(@l (#] D2(X2.82) X 11 Disp
| A Ll
DESCRIPTION:

Bits in the halfword second operand are tested to set the condition code, and the
second operand is set to all ones. No other access to this location, including DMA,
is permitted between the fetch and the storing of all ones.

RESULTING CONDITION CODE:

00 The bits are all zeros
11 The bits are mixed with zeros and ones:
01 The bits are all ones

INDICATORS:
The carry and overflow indicators are not changed by this instruction.
PROGRAMMING NOTES:

TS can be used for the controlling and sharing of a common storage area by more than
one program. To accomplish this, a halfword can be designated as control. The
desired interlock can be achieved by establishing a program convention in which a
zero halfword indicates that the common area is available, but a one means that the
area is being used. Each using program then must examine this halfword by means of
a Test and Set before making access to the common area. If the test sets the
condition code to 00, the area is available for use; if it sets the condition code
either 01 or to 11, the area cannot be used. Because Test and Set permits no access
to the test halfword between the moment of fetching (for testing) and the moment of
storing all ones (setting), the possibility is eliminated of a second program
testing the halfuword before the first program is able to reset it. Selective bits
can be tested by using the TEST AND SET BITS instruction.

Bits 5 through 7 are not used by this instruction. These bits should be set to
zero, as shown above and considered an op code extension.

9-17

9.11 TEST AND SET BITS

Op OoP>» Disp* B2 Immediate Data
1jojiftjofryr 1) L | || | LU Lt
0 4 5 7 8 1314 15 16 31
Mnemonic Format — *Displacements of the form
TSB D2(B2).Data 111XXX are invalid.
DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
immediate data is logically tested with the halfword second operand. The logical
sum (OR) of the immediate data and the halfword second oserand is formed bit-by-bit.
The result replaces the halfword second operand. No other access to this location,
including DMA, is permitted between the fetching of the operand and the storing of
the result.

RESULTING CONDITION CODE:
00 Either the bits selected by the immediate data are zeros or the immediate
data is all zeros.
11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones
INDICATORS:
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:
The one bits in the halfword mask specify the bits of the halfword second operand

that are set one. The result replaces the halfword second operand. The following
table defines this instruction.

TEST AND SET
BITS
Mask 1100
Storage 1010
Result 1110

9-18

9.12 LOAD EXTENDED ADDRESS

oP . R1 R2
01t 00O 11 1 011
1 i 1 []] 1 j 2 1 1
0 4 5 7 8 11 1 1
1 2 3 5
Mnemonic Format
LXAR R1, R2
op R1 Al B2
0100 1 11 111 M Address Specification
1 1 1 1 1 [1 1 1 | L 1 1 1 1 1 1 1 1 1] 1 1 1 1
0 4 5 7 8 1111 3
1 2 3 4 5 6 1
ﬂ Mnemonic Format
Displacement
Extended: 0 LXA R1,D2 (B2) Lt e e e ——
, |
Indexed: 1 LXA[@] [#] R1, D2 (X2, B2) X All Displacement
1] | I | 1 1 1 il 1 1 1]
DESCRIPTION:

General register R1, and the associated Data Sector Extension (DSE), are initialized
from the fullword second operand. Bits 0 and bits 16 through 31 of R1 are =zeroed.
Bits 1 through 15 of Rl are replaced by bits 1 through 15 of the full word constant,
and the DSE associated with Rl is replaced by bits 28 through 31 of the fullword

address constant.

The format of the fulluword address constant second operand is:

Reserved
00
1

O X

(@)
om0
oo

BSR DSR

Address 0 0
1

- .

oN
- N
NN
w N
N

11 1
5.6 9
RESULTING CONDITION CODE:

The code is not changed.

INDICATORé:

The overflow and carry indicators are not changed.
Note: If the DSR to be loaded and the current DSE are equal, an early out option is

executed by microcode to significantly shorten instruction axecution time.

9-19

9.13 LOAD DSE MULTIPLE

V
Op 7/ B2 Address Specification
0,1,1,0,11 [ﬁ21 1,11 3 'S RN SR TS NN SR THNE NEN W W S N B L

A
1M
0 4 5 7 8 11 1 1 1 1 3
1.2 3 4 5 6 1
AM Mnemonic Format Displacement
Extended: 0 LDM D2(B2) L1 [N N W TR W N N N |
Indexed: 1 LDM[@] [#] D2(X2,B2) X L , Displacement
[[1] | 1 1 1] | . |
DESCRIPTION:

The four Data Sector Extensions (DSE) corresponding to R0-R3 of the current register
set are initialized from the fullword second operand.

The format o%f the fullword second operand is:

RO R1 R2 R3
DSE DSE DSE DSE
olololo 1 i 1 olololo 1 i 1 0lololo 1 1 1 oLoloio 1 1
0 3 4 7 8 11 11 12 2 2 2 2 3
12 5 6 9 0 3 4 7 8 1

RESULTING CONDITION CODE:

The .code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.
PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

9-20

9.1 STORE EXTENDED ADDRESS

op R1 R2
1i011 1010 11 1,1 L1|°_1 11
0 4 5 7 8 1 11 1
1 2 5
Mnemonic Format
STXAR R1,R2
" OP R1 A B2 Address Specification
1|011|0|0] 1 1l1l1111M 1 1 | | 1 1 1 1 1 1 1 i 1 i 1 1
0 4 5 7 8 1T 1 1 1 1 3
1 2 3 4 5 6 1
AM Mnemonic Format Displacement
Extended: 0 STXA R1, D2 (B2) Foeead e e = SR S R S N

Indexed: 1 STXA[@] [#] R1,D2 (X2, B2) I Displacement

i i 1 i 1 1 | | L 1 1 1

DESCRIPTION:

The extended data address contents of Rl plus Rl DSE are stored at the fullword
second operand location in fullword address constant format. Bit 0 of the second
operand is set to one, bits 1 through 15 are replaced by bits 1 through 15 of R1,
bits 28 through 31 are replaced by the contents of R1 DSE, bits 16 through 19 are
set to zero, and bits 20 through 27 are unchanged and ignored.

The format of the fullword address constant second operand is:

Address Reserved BSR DSR
1 0 1 0 1 0 1 0 § [l [1 1 1

0O X
(@)
m O
o0

onN
- N
NN
wN
&N
~N N
N
B

11 1
5 6 9
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

9-21

9.15 STORE DSE MULTIPLE

Op 7 Al B2
1 00 10 11 1 11 |M Address Specification
S B | g NN NS B | 1 i1 1 1 L1 1 9 9 4 3 1 1
0 4 5 7 8 1111 11
. 1 2 3 4 5 6
AM Mnemonic Format Displacement
Extended: 0 STDM D2(B2) oo e
|
Indexed: 1 STDM([@] [#] D2(X2,B2) X Al Displacement
1 1 1 1 1 1 1 1 1 f 1 1
DESCRIPTION:

The four Data Sector Extensions (DSE) corresponding to R0-R3 of the current register

set are stored at the location of the fullword second operand.

The format of the fullword second operand is:

RO R1 R2 R3

DSE DSE DSE . DSE

0,0,0408 4 4 0,0,0,0 g 3 10,0;,0,0 1 0,0,0,0 L3
0 3 4 7 8 11 11 1 2 2 2 2 2 3
1 2 5 6 9 0 3 4 7 8 1

RESULTING CONDITION CCDE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

10.0

INTERNAL CONTROL OPERATIONS

A CPU instruction will initiate an Internal Control operation that will perform the
following functions, depending on the control word (CW) coding:

A fullword will be transferred between general register R1 and counter 1'
or 2. The high halfword of general register Rl (the most significant
halfword) is transferred to or from the main store halfword location 00BO
for counter 1, or 00Bl for counter 2. The low halfword of general
register Rl (the least significant halfword) is transferred to or from a
16-bit hardware binary counter 1 or counter 2. Section 2 contains a
description of counter operations. .

An AGE command word, specified by bits 16 through 31 of the CW (R2), will
be transferred to the AGE interface, and a halfword will be transferred to
or from bits 0 through 15 of a general register (R1) and the AGE
interface.

Four discretes will be transferred from bits 0 through 3 of a general
register (R1) to the I/0 interface.

XMIT Disable
BCE Disable
Spare 1
Spare 2

UMN = o
[}

I/0 channel reset. The channel reset operation issues a reset to the IO0.
The I0 and CPU uses the signal to reset the I0/CPU interface logic. If an
external interrupt 0 has occurred, this command must not be executed until
I0OP level A interrupt register has been read.

10-1

10.1 INTERNAL CONTROL

opP R1 R2

1grjofrgrl L1 frgrjijoiol ||
0 4 5 78 111213 15

Mnemonic Format
ICR R1,R2

DESCRIPTION:
This instru-tion transfers a fullword to or from the general register specified by

Rl. Operat.sns are further defined by a control word contained in bits 0 through 31
of the gensral register specified by R2. The CW format is shown below.

CONTROL WORD (Cii>:

D , Reserved for AGE Command Word

| []| [0]910j0j0j0j040405040] | 1 J | 1 L L L L L L1
0 4 5 18 16 31
Legal D
Command Meaning
00000 Read Counter 1
00001 Read Counter 2
00101 Read AGE
01000 Write Counter 1
01001 Write Counter 2
01100 Write Discretes
01101 Write AGE

10000 Channel Reset

No data transfer is associated with the Channel Reset operation.
RESULTING CONDITION ~4DE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAM INTERRUPTS:

Illegal operation

Privileged iistruction
Clears any pending counter interrupts when counter is loaded

"10-2

PROGRAMMING NOTES:

r This is a privileged operation and can only be executed when the CPU is in the
Supervisor state.

Command codes which are not defined in this document are illegal and should not be.
used. Unlike previous versions of this architecture, only the command 10000 causes

a channel reset, not the general case 1XXXX.

The AGE command word, specified by bits 16 through 31 of the CW (R2), should be a
valid AGE command, otherwise an illegal operation interrupt could occur. The valid
AGE commands are: Read AGE (04XX), Load AGE (86XX), Diract AGE (84XX) and AGE Mode
Control (87XX). Bits 24 through 31 of the CW are decoded by the AGE to perform a

definite function.

When using either Counter 1 or Counter 2 as a counter (rather than as an incremental
timer), a possibility exists that the counter could be in error during a single read
by 65,536 microseconds (low order bit of location 00B0 or 00B1). This problem can
be avoided by doing two consecutive reads and making comparisons to pick the correct
reading. TJo further insure that one of the readings is correct and as a
compensation for interrupt processing overhead a value of two (2) is added to the
timer when it is read. The write Counter N commands reset the corresponding'clock
interrupt latch, clearing any pending interrupts.

In addition %o <the normal shuttle ICR command codes, the following barduare
dependent ICR commands are defined for AP-1015 series as an aid for diagnostic
coding. General use of these codes is not encouraged. If the timer is loaded with
a value and read while in the stop condition the value rcad will be incremented by a
value of two.

Typical
Execution

Originate Function of ICR R/W Cocle Code in R2 Time (us)
Read Soft Error Counters R 0002 0002 0000 7.5
(1-7, low page; 9-15, high page)
Load Counter 0 W 8801 8801 0000 5.5
Start Counter 0 W 8802 8802 0000 5.75
Stop Counter 0 W 8803 8803 0000 5.75
Load Counter 1 W 8809 8809 0000 5.75
Start Counter 1 W 880A 880A 0000 5.75
Stop Counter 1 W 880B 880B 0000 5.75
Read Counters R 0802 0802 0000 5.5
Read Counters R 0803 0803 0000 5.75
AGE & CPU Read AGE R 04XX 2800 04XX 20.25
AGE & CPU Load AGE W 86XX 6800 86XX 20.00
AGE & CPU Direct AGE W 84XX 6800 84XX 20.25
AGE & CPU AGE Mode Control W 873X 6800 87XX 20.25
MMU Read and Clear MFER (Figure 10-1) R 1408 1408 0000 7.25
MMU Read MMU (Figure 10-1) R 140A 140A 0000 7.25
MMU Read EDAC Address Reg. 00-15 R 140F 140F 0000 7.25
MMU Read MFER (Figure 10-1) R 140C 140C 0000 7.25
MMU Clear Soft Error Counter W 9402 9402 0000 5.75

10-3

Bit MFER Function MMU Function

0 Spare = 0 Spare = 0

1 Illegal Address = 1 Illegal Address = 1

2 Spare = 0 Spare = 0

3 Spare = 0 Spare * 0

4 Spare = 0 Spare = 0

5 MMP Store Protect =1 MMP Store Protect = 1

6 MMP Store Protect Bits Miscompare = 1 MMP Store Protect Bits Miscompare = 1

(DRAM only) (DRAM only)

7 CPU/IOP Single Bit Memory Error =1 CPU/I0OP Single Bit Memory Error = 1
8 IOP Multibit Memory Error = 1 IOP Mulitibit Memory Error =1

9 IOP Store Protect Error =1 I0P Store Protect Error =1
10 Spare = 0 Spare = 0
11 CPU Multibit Error =1 1750 Block Protect Enabled =1
12 Spare = 0 Spare = Float
13 Spare = 0 Logic 0
14 Illegal I/0 Command = 1 CMO0S Memory Installed = 0
15 Spare = 0 MMP = 0; 1750 = 1

Figure 10-1.

10-4

MFER/MMU Registers

11.0 AP-101S SHUTTLE INSTRUCTION SEJ

11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHART

-

RS Format
FSRS’ ? Extended Indexed Addressing (AM=1)
ormats Addressing —_
(AM=0) IA |1 X=000 X=000
PEA=(B)+DISP

112#11 | EA=(B)+DISP EA=(B)+DISP 00 EA=IC+PEA EA=X)q.,5*PEA

01 | EA=IC-PEA EA=(X)_,s+PEA
10 | EA=MS(PEA) EA=MS(PEA)+X)g.15
11 | EA=MS(PEA)**| EA=MS(PEA) **%+X)0-15

PEA=DISP

B2=11 | EA=(B)+DISP | EA=DISP 00 | EA=IC+PEA EA=(X)y.15*PEA

01 | EA=IC-PEA = | EA=(X)s_ .+PEA
10 | EA=MS(PEA) | EA=MS(PEA)*®X)q_;5
11 | EA=MS(PEA)** | EA=MS(PEA)***+X)o_, 5

‘EA
PEA
RN)
RN
®)
B2
MsS()
DIsp
X

X)o-15

AM
IA

I
IC

*
X
KEX

Definitions

Effective address, main storage address of second operand

Preliminary effective address

Contents of bits 0-15 of general register N specified by B2 or X

General register "N, where N = 0 to 7

Contents of bits 0-15 of general register specified by the B2 field

B field of SRS, SI, or RS format instruction .
Contents of the main storage location specified by the contents of the parenthesis
Displacement field of instruction

X field of RS format instruction with indexed mode of addressing

Most significant halfword (bits 0-15) of the content of index register X automatic-
ally aligned.

AM (addressing mode) field of RS format instruction

IA (indirect address) field of RS format instruction with the indexed mode of
addressing

I field of RS format instruction with indexed mode of addressing

Updated Instruction Counter

Automatic Index Modification

Automatic Storage Modification

Direct Storage Addressing with/without Post Indexing

X INDEX VALUE X INDEX VALUE
000 Zero 100 R4)
001 R1) 101 RS5)
010 R2) - 110 . R6)
011 ®R3) 111 ®R7

11-1

(This page intentionally left blank)

11-2

12.0 AP-101S INSTRUCTION REPERTOIRE

12.1 SHUTTLE INSTRUCTION SET

Name Mnemonics Format

Fixed Point Operations

Add AR, A RR,SRS,RS
Add Halfword AH SRS, RS
Add Halfword Immediate AHI RI

Add to Storage AST RS
Compare CR,C PR.SRS,RS
Compare Between Limits CBL RR
Compare Halfword CH SRS,RS
Compare Halfword Immediate CHI RI
Compare Immediate with Storage CIST SI

Divide DR,D RR,SRS,RS
Exchange Upper and Lower Halfuwords XUL RR

Insert Address Low IAL SRS, RS
Insert Halfword Low IHL RS

Load LR, L RR,SRS,RS
Load Address LA SRS, RS
Load Arithmetic Complement LCR RR

Load Fixed Immediate LFXI RR

Load Halfword , LH SRS, RS
Load Multiple LM RS

Modify Storage Halfword MSTH SI
Multiply MR, M RR,SRS,RS
Multiply Halfword MH SRS, RS
Multiply Halfword Immediate MHI RI
Multiply Integer Halfword MIH RS

Store ST SRS, RS
Store Halfword STH SRS, RS
Store Multiple STM RS
Subtract SR, S RR,SRS,RS
Subtract from Storage SST RS
Subtract Halfword SH SRS,RS
Tally Down TD SRS,RS

12-1

Name Mnemonics Format

Branch Operations

Branch and Link BALR,BAL RR,RS
Branch and Index BIX RS
Branch on Condition BCR,BC RR,RS
Branch on Condition Backward BCB SRS
Branch on Condition (Extended) BCRE RR
Branch on Condition Forward BCF SRS
Branch on Count BCTR,BCT RR,RS
Branch on Count Backward BCTB SRS
Branch on Overflow and Carry BVCR,BVC RR,RS
Branch on Overflow and Carry Forward BVCF SRS

Shift Operations

Normalize and Count NCT RR

Shift Left Logical SLL SRS
Shift Left Double Logical SLDL SRS
Shift Right Arithmetic SRA SRS
Shift Right Double Arithmetic SRDA SRS
Shift Right Logical SRL SRS
Shift Right Double Logical SRDL SRS
Shift Right and Rotate . SRR SRS
Shift Right Double and Rotate SRDR SRS

Logical Operations

AND NR,N RR, SRS, RS

AND Halfword Immediate NHI RI

AND Immediate with Storage NIST SI

AND to Storage NST RS
Exclusive-0R XR, X RR,SRS,RS
Exclusive-0OR Halfword Immediate XHI RI
Exclusive-OR Immediate with Storage XIST SI
Exclusive-0OR to Storage XST RS

OR OR,0 RR, SRS, RS
OR Halfword Immediate OHI RI

OR to Storage 0ST RS

Search Under Mask SUM RR

Set Bits SB SI

Set Halfword SHW SRS,RS
Test Bits TB SI

Test Register Bits TRB RI

Test Halfword TH SRS,RS
Zero Bits ZB SI

Zero Register Bits ZRB RI

Zero Halfword ZH SRS,RS

12-2

Name ' Mnemonics Format

Floating Point Operations

Add (Long Operand) AEDR, AED RR,RS

Add (Short Operands) AER, AE RR,SRS,RS

Compare (Short Operand) CER,CE RR,RS

Compare (Long Operand) CEDR,CED RR,RS

Convert to Fixed Point CVFX RR

Convert to Floating Point CVFL RR

Divide (Extended Operand) DEDR,DED RR,RS

Divide (Short Operand) - DER,DE RR,SRS,RS

Load (Long Operand) LED RS

Load (Short Operand) LER,LE RR, SRS, RS

Load Complement (Short Operand) LECR RR

Load Fixed Register LFXR RR

Load Floating Immediate LFLI RR

Load Floating Register LFLR RR

Midvalue Select (Short Operands) MVS RS

Multiply (Extended Operand) MEDR,MED RR,RS

Multiply (Short Operand) MER, ME RR,SRS,RS

Subtract (Long Operand) SEDR,SED RR,RS

Subtract (Short Operand) SER,SE RR,SRS,RS

Store (Long Operand) STED RS

Store (Short Operand) STE SRS,RS
Special QOperations

Diagnosex - RS

Store Extended Address STXA RR,RS

Store DSE Multiple STDM RS

Insert Storage Protect Bitsx ISPB RS

Load Program Statusx LPS . RS

Move Halfword Operands MVH RR

Set Program Mask SPM RR

Set System Maskx SSM RS

Stack Call SCAL RS

Stack Return SRET RR

Load DSE Multiple LDM RS

Load Extended Address LXA RR,RS

Supervisor Call SVC RS

Test and Set TS RS

Test and Set Bits TSB SI

Internal Control Operations
Internal Controlx ICR RR

I/0 Operations

Program Controlled Input/Outputx PC RR

¥Privileged Instruction:

12-3

(This page intentionally left blank)

12-4

13.0 AP-101S OP CODE ASSIGNMENTS

0P0, OP1
op
2,3 .
00 01 11 10
OP 04 = 1
00 SRS SUBTRACT SRS DIVIDE SBS SUB HW
RK SUBTRACT RR DIVIDE RR BROV & CRY RR LOAD FL IMM
RR., COMP BTWN RR, COMP FL ST _RR, SET PROG MSK RS SUB HW
LATS RS“DIVIDE RS“BROV & CRY RS, SET SYST MASK
RS SUBTRACT RS. COMP FL ST RS. LM, LPS,
RS, SUB FRM STO “ : STH, SVC
01 SRS LOAD SRS SUBTRACT FL ST SKS BR RELATIVE SRS LOAD HW
RR LOAD RR SUBTRACT FL ST RE ICR 1I/0 RR, SUM
RR COMP FL LN " PR. SUBTRACT FI IN RR, PC RSLOAD HW
RS LOAD RS“SUBTRACT FL ST RSBIX RS, MIH
RS, COMP FL LN RS, SUBTRACT FL LN
11 SRS STORE FL ST SRS LOAD FL ST SRS REG SH DBL SRS STO HW
RR CONV TO FXD RR LOAD FL ST SRS COMPUTED SH DBL RR LOAD FX IM
RR, CONV TO FLT RR, LOAD COMPL FT RS STO HW
RS“STORE FL ST s? : RS, TST & SET
RS LOAD FL ST <
RS, LOAD FL LN
10 SRS OR SRS DIVIDE FL ST SRS LOAD ADDRESS SRS MULTIPLY HW
RR OR RR DIVIDE FL ST RR, LOAD ARITH TEST 3 (RR.)
RR, LOAD FLTG REG RR MOVE HALFWORD OPS| cOMP RS MULTIPLY HW
RSOR RS DIVIDE FL ST RS LOAD ADDRESS
RS, OR TC STORE TEST 2 (LRS) RS., INSTR PROT BITS
RS LOAD DSE MTPL -
OP 04 = 0
00 SRS ADD SRS MULTIPLY RR BR ON COND SRS ADD HW
RR ADD RR MULTIPLY RR, BR ON COND EXT RR,
RR, XUSL HW RS MULTIPLY RS“BR ON COND RS“ADD HW
RS“ADD RS LOAD DSE RS, DIAGNOSE RS, INSERT HW LOW
RS, ADD TO STORE RR LOAD DSE
01 SRS COMP DVD FL SRS ADD FI, ST : SRS COMP HW
LN BR ADD FL ST RR BR ON CT RR, STACK RTRN
RR COMP RR, ADD FL LN TEST 4 (RR) RS“COMP HW
RR., DVD FL LONG RS“ADD FL ST RS BR ON CT RS STORE DSE MTPL
RS“COMP RS, ADD FL LN 'RS, STACK CALL
RS, DVD FL LN
11 SRS STORE SRS XOR SRS RG SH SING TEXD
R, MPY FL LN KR XOR SRS COMPUTED SH SING| RR, RS
RS“STORE RS XOR Rl = OPX
RS, MPY FL LK .| RS XOR TO STORE
10 SRS AND SRS MULTIPLY FL ST SRS INSRT ADD LO IMPL
RR AND RR MULTIPLY FL ST BRR BR & LNK SRS, RS
RR, LOAD FX RG TEST 1 (RR) RS BR & LNK Rl = OPX
RSAND RS MULTIPLY FL ST RR, NORM & CNT TEST 3 (LRS)
RS, AND TG STORE RS, MID VALUE SLCT RS, INSTR ADD LO RR STORE DSE
RS STORE DSE

Notes: OPl12 = 1 Causes either RR., or RS Operations FL LN - Floating-Point (Long Operands)
FL ST - Flocating-Point (Sgort Opg_rands) HW - Halfwords

Op Code 00C1l with OP12 = 1 is reserved

13-1

AP-101S OP CODE ASSIGNMENTS (cont)

oP R1=0PX RRo

11001 000 Set Program Mask
11001 o001 Reserved
11001 o010 Reserved
11001 011 Reserved
11001 100 Reserved
11001 101 Reserved
11001 110 Reserved
11001 111 Reserved
IMPLIED IMMEDIATE

10100 000 Tally Down
10100 001 Zero Halfword
10100 o010 Set Halfword
10100 o011 Test Halfword
10100 100 Reserved
10100 101 Reserved
10100 110 Reserved
10100 111 Reserved

EXPLICIT IMMEDIATE

oP

10110
10110
10110
10110
10110
10110
10110
10110

R1=0PX

RR

000
001
010
011
100
101
110
111

Add Half Immediate
Zero Register Bits
OR Half Immediate
Test Register Bits
XOR Half Immediate

Comp Half Immediate
‘AND Half Immediate

Mult Half Immediate

RS,

Store Multiple ,
Supervisor Call

Reserved
Reserved

Load Multiple
Load Program Status

Reserved

" Reserved

SRS, RS
SRS, RS
SRS, RS
SRS, RS

RRog

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

13-2

SRS

Modify Storage Halfword

Zero Bits
Set Bits
Test Bits

XOR Immediate With Store
Compare Immediate With Store
AND Immediate With Store
Test and Set Bits

14.0

AP-101S INSTRUCTION SET

14.1

Index alignment

Halfword operations align index

PEA (described in Section
(described in Section 2).

MULTIPLE, LOAD PROGRAM STATUS,

excluded from automatic index alignment and h

occurs automatically.
register specified by X specify entities.
defined by the particular operation being e

2) or the ADDRESS portion of
It

AUTOMATIC INDEX ALIGNMENT DESCRIPTION

That is, bits 0 through 15 of the general
The identity of this entity is explicitly
xecuted. :

value bit 15 with the least significant bit of the
an indirect address pointer
noted that the LOAD MULTIPLE, STORE
STORAGE PROTECT BITS instructions are
ave a halfuword index alignment.

should be
and INSERT

PEA or Address

L1l

18

Index Value
L 1

0

Likewise, fullword operations functionall
Note that bit 0 of the index value is lost.

left, prior to alignment.

15

v shift the index value one position to the

|

PEA or Address
L1 11

0

Index Value
]

||

1

Likewise,
the left prior to alignment.

doubleword operations functionally shift the
Note that bits 0 and 1 of

15

index value two positions to
the index value are lost.

]

PEA or Address
Ll 111

| L1t 111

0

1314 15

Index Value
[1 1

[

15 |

(This page intentionally left blank)

14-2

15.0 AP-101S DIAGNOSTIC FUNCTIONS

This section describes the several operations available, any special requirements,
any results, and provides a timing estimate for each operation, assuming successful
completion.

The purpose of the Diagnose Instruction is to provide tests of hardware that are
critical to the proper operation of the Central Processor Unit (CPU) and to provide
access to hardware not accessible or easily testable using the implemented
instruction set. In addition, tests that might require an inordinate amount of time
and/or memory are partially or wholly implemented in microcode.

All Diagnose Instructions, unless stated otherwise in the description, execute in 50
microseconds or less and do not delay I/0 for more than 3 microseconds. The Read
and Write System and Program Mask Diagnose Instructions do not affect the condition
code. All other Diagnose Instructions set the condition code zero for pass and
negative for fail.

The execution of a hardcore diagnostic test terminates at the detection of the first
error for all tests except interrupt page tests. Interrupt page test errors are
detected during execution of EA SCAN 5 assist. Detection of an error shall cause
diagnostic data to be logged out in locations x'104"' through x'12D°'.

The execution of a Diagnose Instruction terminates at the detection of the first
error. Detection of an error Wwill cause diagnostic data to be logged out in
locations X'106" through X'12D'.

The layout of the log out area is described below:

Location Description

104 Unlogged error count
105 Error Flag
106-7 FA register
108-9 FB register
10A-B FC register
10C bits 0-7 EI register
bits 8-15 EA register
10D bits 0-7 EB register
bits 8-15 X'00°" i
10E-11D Local Store CPU Sector 0 registers
11E-12D Local Store CPU Sector 7 registers

Unlogged error count contains a count of the number of errors which were not logged
because the log area was occupied. If error count and error flag are both zero, the
error flag is set to X'01' and error data is logged out. If error count or error
flag are not zero, error count is incremented and error data is not logged out.
Location X"111' (Local Store CPU Sector 0 Register 3) contains the error code.

Diagnose, unlike other instructions, does not follow the rule that programming
errors are distinguished from equipment errors. Improrer use of Diagnose may result
in false machine-check indications or may cause actual machine malfunctions to be
ignored. It may also alter other aspects of system operation, including instruction

15-1

execution and channel operation, to an extent that the operation does not comply
with that specified in this manual. As a result of the improper use of Diagnose,
the system may be left in such a condition that the power-on reset function must be
performed.

The following descriptions define the hexadecimal value effective address (command
" word) required to select each of the microsequences and an estimate of the average
execution time for RS Extended Addressing without a Base Register. Actual execution
times will depend on pipe prefetching and conflicts, and I/0 interference. The
Diagnose descriptions also include any programming restrictions and a description of
the data returned when an error is detected. All effective addresses not described
here are reserved and shall not be used. The result of using a reserved effective
address is indeterminate.

15-2

The CPU Hardcore Microcode Test is separated into nine tests to facilitate the 50
microsecond interruptibility requirement.

Hexadecimal
Contents of
Effective
Address

0000

o100

0200

0300

Description

CPU HARDCORE MICROCODE TEST 0

(31 microseconds)
The CPU hardcore microcode test 0 verifies the basic operation of a
portion of the CPU pages. The functions tested are: fraction ALU,
fraction zero detect, fraction A, B, and C registers and controls,
exponent ALU, exponent A, B, and I registers and controls. At
completion of the test, the condition code shall be set zero if no
error occurred. The condition code shall be set negative if an error
occurred.

CPU HARDCORE MICROCODE TEST 1

(27 microseconds)
The CPU hardcore microcode test 1 verifies the basic operation of a
portion of the CPU pages. The function tested is the two- and
four-way Y-BUS micro branch hardware. At completion of the test, the
condition code shall be set zero if no error occurred. The condition
code shall be set negative if an error occurred.

CPU HARDCORE MICROCODE TEST 2

(45 microseconds)
The CPU hardcore microcode test 2 verifies the basic operation of a
portion of the CPU pages. The function tested is the 16-way Y-BUS
micro branch hardware. At completion of the test, the condition code
shall be set zero if no error occurred. The condition code shall be
set negative .if an error occurred.

CPU HARDCORE MICROCODE TEST 3

(46 microseconds)
The CPU hardcore microcode test 3 verifies the basic operation of a
portion of the CPU pages. The function tested is the two-way STAT A
bit microbranch hardware. At completion of the test, the condition
code shall be set zero if no error occurred. The condition code-
shall be set negative if an error occurred.

15-3

Hexadecimal
Contents of
Effective

Address

0400

0401

0500

0600

Description

CPU HARDCORE MICROCODE TEST ¢

(50 microseconds)
The CPU hardcore microcode test 4 verifies the basic operation of a
portion of the CPU pages. The function tested is the four-way STAT A
bit microbranch hardware. At completion of the test, the condition
code shall be set =zero if no error occurred. The condition code
shall be set negative if an error occurred.

CPU HARDCORE MICROCODE TEST 8
(16 microseconds)
The CPU hardcore microcode test 8 verifies the basic operation of a

portion of the CPU pages. The function tested is local store
addressing. At completion of the test, the condition code shall be
set zero if no error occurred. The condition code shall be set

negative if an error occurred.

CPU HARDCORE MICROCODE TEST 5

. (5.2 milliseconds)
The CPU hardcore microcode test 5 verifies the basic operation of a
portion of the CPU pages. The function tested is the Constant PROM.
At completion of the test, the condition code shall be set zero if no
error occurred. The condition code shall be set negative if an error
occurred. Note: This test will delay any pending interrupts more
than 5.2 milliseconds and so should not be executed in an operational
environment which cannot tolerate this delay.

CPU HARDCORE MICROCODE TEST 6

. (78 microseconds)
The CPU hardcore microcode test 6 verifies the basic operation of a
portion of the CPU, MMU, and memory pages. The functions tested are:
basic memory addressing and data, and basic store protect bit
hardware. At completion of the test, the condition code shall be set
zero if no error occurred. The condition code shall be set negative
if an error occurred. Note: This test will delay any pending
interrupts more than 78 microseconds, and will delay any pending I/0
operation more than 68 microseconds and so should not be executed in
an operational environment which does not control I/0 activity.

15-4

Hexadecimal
Contents of
Effective

Address

0700

1000

2000

2001

3000

Description

CPU HARDCORE MICROCODE TEST 7

(14.2 microseconds)
The CPU hardcore microcode test 7 verifies the basic operation of a
portion of the CPU pages. The functions tested are the Real Time
Communications Channel register and the Execution Unit Program
Counter. The CCU need not be attached to execute this test. At
completion of the test, the condition code shall be set zero if no
error occurred. The condition code 5hall be set negative if an error
occurred. Note: This Diagnose Instruction cannot be macrostepped.

READ PROGRAM AND SYSTEM MASK (PSMR)
(4.8 microseconds)

The Read Program and System Magk reads bits 16-47 of the active PSW
and places them in bits 0-31 of register R1. The condition code is
not altered.

LOCAL STORE CPU SECTOR TEST (LSMICRO)

(40 microseconds)
The Local Store Sector test shall perform a write/read test on one
sector of CPU local store. Register Rl bits 1-6¢ shall contain the
register set to be tested. The contents of the local store. sector
tested will not be altered. At completion of the test, the condition
code shall be set zero if no error occurred. The condition code
shall be set negative if an error occurred.

LOCAL STORE CONSTANT SECTOR TEST (LSMICRO)

(38 microseconds)
The Local Store Sector test shall perform a write/read test on one
sector of constant local store. Register R1 bits 1-4¢ shall contain
the register set to be tested. The contents of the local store
sector tested will not be altered. At completion of the test, the
condition code shall be set zero if no error occurred. The condition
code shall be set negative if an error occurred.

WRITE PROGRAM AND SYSTEM MASK (PSMW)
(9.2 microseconds)

The Write Program and System Mask command loads bits 16-47 of the
active PSW from bits 0-31 of register R1.

15-5

Hexadecimal
Contents of
Effective

Address

4000

4100

7000

7001

Description

LOCAL STORE READ ASSIST (LSREAD)

(5.8 'microseconds)
The Local Store Read Assist allows any local store register to be
read. Bits 0-15 of register R1 shall contain the address of the
local store register to be read. Bits 0-6 shall be =zero. Bit 7
shall be one to reference the Constant Sector and zero to reference
the CPU Sector. Bits 8-11 shall indicate the sector number and bits
12-15 shall indicate the register number. The contents of the local
store register shall be placed in bits 16-31 of register RI1.

LOCAL STORE WRITE ASSIST (LSWRITE)

(13 microseconds)
The Local Store Write Assist allows any local store register to be
written. Bits 0-15 of register Rl shall contain the address of the
local store register to be written. Bits 0-6 shall be =zero. Bit 7
shall be one to reference the Constant Sector and zero to reference
the CPU Sector. Bits 8-11 shall indicate the sector number and bits
12-15 shall indicate the register number. Bits 16-31 of register R1
shall be placed in the local store register referenced by bits 0-15
of register RI1. After execution of this assist, the PSW will be
updated and the pipe purged so that a write to the PSW portion of
local store will be processed immediately.

H-BUS READ (HBUSR)

(6.6 microseconds)
The H-BUS Read command allows any Internal I/0 (II0) command to be
read. It is the responsibility of the macro programmer to ensure
that only valid commands are issued. Invalid commands may cause loss
of control or bus timeouts. Bits 0-15 of register Rl shall contain
the Internal Bus command. Bits 16-31 of register Rl shall contain
the data to be sent with the read command, if any is required. Bits
16-31 of register R1 shall contain the data read. The execution time
of this Diagnose is II0 command dependent.

H=BUS WRITE (HBUSW)

(4.2 microseconds)
The H-BUS Write command allows any Internal I/0 (II0) command to be
written. It is the responsibility of the macro programmer to ensure
that only valid commands are issued. Invalid commands may cause loss
of control or bus timeouts. Bits 0-15 of register Rl shall contain
the Internal Bus command. Bits 16-31 of register R1 shall contain
the data to be written. The execution time of this Diagnose is 110
command dependent.

15-6

Hexadecimal
Contents of
Effective
Address

7100

7101

Description

DETECT STORES INTO IU FILE (BSTATS)

(9.6 microseconds)
The Detect Stores into IU File microcode sets bit 6 of the B STAT
Reg. When this status bit is set, the CPU hardware checks for
conflicts within the IU file. MWhen conflicts are detected, the file
is purged.

DISREGARD STORES INTO IU FILE (BSTAT6)

(9.6 microseconds)
The Disregard Stores into IU File microcode resets bit 6 of the B
STAT Reg. When this status bit is reset, no checks for conflicts
within the IU file are performed. The pipeline will not be purged.

15-7

The Interrupt Page Command PLA Test is separated into five tests to facilitate the
50 microsecond interruptibility requirement.

Hexadecimal
Contents of
Effective

Address

8000

3100

8200

Description

INTERRUPT PAGE COMMAND PLA TEST 0 (CINTCMD)

(32 microseconds)
The Interrupt Page Command PLA test 0 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP II0 commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

INTERRUPT PAGE COMMAND PLA TEST 1 (CINTCMD)

(38 microseconds)
The Interrupt Page Command PLA test 1 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP II0 commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

INTERRUPT PAGE COMMAND PLA TEST 2 (CINTCMD) ‘

(33 microseconds)
The Interrupt Page Command PLA test 2 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP II0 commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

15-8

;5\ \ Hexadecimal
Contents of
Effective

Address

8400

8500

,w.m\\

9000

Description

INTERRUPT PAGE COMMAND PLA TEST 4 (CINTCMD)

(37 microseconds)
The Interrupt Page Command PLA test 4 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP II0 commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

INTERRUPT PAGE COMMAND PLA TEST 5 (CINTCMD)

(34 microseconds)
The Interrupt Page Command PLA test 5 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP II0 commands to the interrupt page. The interrupt
rpage verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will aluays
be zero.

INTERRUPT PAGE ARITHMETIC INTERRUPT TEST (CPUARITH)

(23 microseconds)
The Interrupt Page Arithmetic Interrupt test verifies that the
Floating Point Overflow, Fixed Point Overflow, and Floating Point
Underflow CPU interrupts set the proper bits in the interrupt page
Arithmetic Group Capture Register. The CPU microcode informs the
interrupt page that the test will be run and then forces each
interrupt in the proper sequence. The interrupt page verifies that
the proper interrupts were received in the proper sequence. Any
errors detected by the interrupt page during this test shall be saved
in the interrupt page Scan Register which can be read using the EA
Scan 5 Assist Diagnose. The condition code will always be set zero.

15-9

Hexadecimal
Contents of
Effective

Address

9100

A00Q

B0OO

Description

INTERRUPT PAGE H-BUS WRAP ASSIST (IHBUSWRP)

. (11.6 microseconds)
The Interrupt Page H-BUS Wrap assist verifies that data can be sent
to the interrupt page on the H-BUS and received from the interrupt
page on the H-BUS and INBUS correctly. The data pattern in bits 0-15
of register Rl shall be sent to the interrupt page on the H-BUS. The
data received from the interrupt page on the H-BUS shall be placed in
bits 16-31 of register R1, while the data received on the INBUS shall
be placed in bits 0-15 of register R1+1.

EU ROS PARITY ERROR MICROCODE TEST (ROSPAR)

‘ (25 microseconds)
The EU ROS Parity Error microcode test verifies that the EU ROS
microcode parity check circuit functions correctly. The test
verifies that a microword with incorrect parity generates an EU ROS
parity error. At completion of the test, the condition code shall be
set zero if no error occurred. The condition code shall be set
negative if an error occurred.

DSE RAM TEST (DSETEST)

(72 microseconds)
The DSE RAM test verifies that all DSE RAM locations can be addressed
and that there is no stuck bits. The DSE RAM test first will write
the address of each location into its location. The DSE RAM is read,
verifying that each location can be addressed. Then the DSE RAM test
Wwill write the complement of its address into its location. The DSE
RAM is read, verifying no stuck data bits. If the test passes, the
condition code shall be set zero. Note: The DSE RAM is set to all
zeros at the end of this diagnose instruction.

15-10

T
Y

Hexadecimal
Contents of
Effective

Address

cooo

Description

MONOLITHIC CHECKSUM MICROCODE ASSIST (CKSUM)
(20 microseconds plus 24 microseconds for each additional halfword)

The monolithic checksum assist allows the macrocode to checksum all
monolithic memory locations within a specified range. The 19-bit
start address shall be placed right-justified in the fullword
register Rl1. This register shall be incremented as each halfuword is
checksummed. The 19-bit end address shall be placed right-justified
in the fullword register R1+1. This is the address of the last word

to checksum. This register will not be altered. At completion, the
start address will equal the end address. The checksum shall be in
bits 0-15 of register R1+2. This register should be zeroed by

macrocode before calling the Diagnose to accumulate a new checksum.
This register will contain the updated checksum of the halfword
locations. This Diagnose is interruptible. Note: This test will
delay any pending I/0 operation more than 3.05 microseconds and so
should not be executed in an operational environment which does not
control I/0 activity.

15-11

Hexadecimal
Contentz of
Effect:ve
Address

Cc20X

Description

MONOLITHIC MEMORY READ/WRITE TEST (MEMRWT)

(49 microseconds)
The Monolithic memory Read/Write test shall perform a read/write test
on one fullword of monolithic memory. It may be called repeatedly to
test all memory. This test shall test any location, regardless of
store protect status. It shall test the data bits, check bits, and
store protect bits. At the end of the test, the location shall be
returned to its original value and protect status. Hardware errors
may cause machine check interrupts for bad memory or store protect
unalike. The X field of the Diagnose Command word shall be 0, 1, or
2 to select one of the three test patterns to use in the test.

Pattern
(Both Halfwords) Data Check Bits (binary) Store Protect
0 C3B2 010010 111
1 3C4D 010010 000
2 944C 101101 111

Register Rl shall contain the 19-bit physical address right-justified
of the location to test. This must be an even fullword address. At
completion of the test, the condition code shall be set to zero if
the test passed, and negative if the test failed. If an error
occurs, the Diagnose log out area shall contain the following data in
the CPU Sector Zero local store area:

R0/R1 - Address Tested
R2 - Diagnose Command Word (X'C20X")
R3 = Error Code
X'90' - Data Bits
X'91' - Check/Store Protect Bits
R4/R5 = XOR of actual and expected data
(1 - bit in error)
R6/7R7 - XOR of actual and expected Check

and Store Protect bits.
Note: This test will delay any pending I/0 operation more than 35

microseconds and so should not be executed in an operational
environment which does not control I/0 activity.

15-12

Hexadecimal
Contents of
Effective

Address

D0OO

Description

EDAC SOFT ERROR TEST (DIAGEDAC)
(37 microseconds)
The EDAC Soft Error Test checks the Error Detection And Correction
(EDAC) logic used to detect and correct all single bit errors in
monolithic memory. Bits 0-15 of register Rl shall contain the check
bit pattern to be tested and bits 16-31 of register Rl shall contain
the data bit pattern to be tested. Bits 0-15 of register R1+1 shall
contain the expected data bit pattern for a soft error. At
completion of this Diagnose, a condition code of zero indicates the
test passed and a negative condition code indicates a failure. If an
error occurs, the Diagnose log out area shall contain the following

data in the CPU Sector Zero local store area:

RO - Data read back from halfword location
R1 = Not used
R2 - Diagnose Command Word (X'D000')
R3 - Error Code :
X'9A' - Soft Error expected,
Hard Error bit on
X'9B' - Soft Error expected,
Soft Error bit off
X'9C' - Soft Error expected,
Data not correct
R4 = MMU Fault Extension Register
(MFER) at end of test
R5 - Expected Data for Soft Errors
(R1+1 bits 0-15)

R6/R7 Data Patterns used for test (R1)

The memory address used in this test is location 0 which must not be
store protected. Note: This test will delay any pending I/0
operation more than 6.1 microseconds and so should not be executed in
an operational environment which does not control I/0 activity.

15-13

Hexadecimal
Contents of
Effective

Address

Doo1l

Description

EDAC HARD ERROR TEST (DIAGEDAC) _

(37 microseconds)
The EDAC Hard Error Test checks the Error Detection And Correction
(EDAC) logic used to detect all double bit errors and many multiple
bit errors in monolithic memory. Bits 0-15 of register R1 shall
contain the check bit pattern to be tested and bits 16-31 of register
Rl shall contain the data bit pattern to be tested. At completion of
this Diagnose, a condition code of zero ‘indicates the test passed and
a negative condition code indicates a failure. If an error occurs,
the Diagnose log out area shall contain the following data in the CPU
Sector Zero local store area:

RO - Data read back from halfword location
R1 - Not used
R2 - Diagnose Command Word (X'D001')

R3 = Error Code
X'98' - Hard Error expected,
Hard Error bit off
X'99' - Hard Error expected,
Soft Error bit on
R4 - MMU Fault Extension Register
(MFER) at end of test

R6/R7 Data Patterns used for test (R1)

The memory address used in this test is location 0 which must not be
store protected. Note: This test will delay any pending I/0
operation more than 6.1 microseconds and so should not be used in an
operational environment which does not control I/0 activity.

15-14

Hexadecimal
Contents of
Effective

Address

Do1o

Description

ADDRESSABLE EDAC SOFT ERROR TEST (DIAGEDAC)
(37 microseconds)

The Addressable EDAC Soft Error Test checks the Error Detection And
Correction (EDAC) logic used to detect and correct all single bit

errors in monolithic memory. It allows the user to specify the
address of the location to be used for the EDAC test. This
facilitates the testing of multiple monolithic memory pages. Bits

0-15 of register R1 shall contain the check bit pattern to be tested
and bits 16-31 of register R1 shall contain the data bit pattern to
be tested. Bits 0-15 of register R1+1 shall contain the expected
data bit pattern for a soft error. The 19-bit physical address,
right-justified, of the location to test, shall be contained in bits
16-31 of register R1+1 and bits 0-15 of register R1+2. At completion

‘of this Diagnose, a condition code of zero indicates the test passed

and a negative condition code indicates a failure. If an error
occurs, the Diagnose log out area shall contain the following data in
the CPU Sector Zero local store area:

RO - Data read back from halfword location
R1 = Not used

R2 - Diagnose Command Word (X'D010')

R3 = Error Code

X'9A' - Soft Error expected,
Hard Error bit on
X'9B' - Soft Error expected,
Soft Error bit off
X'9C" - Soft Error expected,
Data not correct
R4 - MMU Fault Extension Register
(MFER) at end of test
R5 - Expected Data for Soft Errors
(R1+1 bits 0-15)
R6/R7 - Data Patterns used for test (R1)

The memory address used in this test must not be store protected.
Note: This test will delay any pending I/0 operation more than 6.1
microseconds and so should not be executed in an operational
environment which does not control I/0 activity.

15-15

Hexadecimal
Contents of
Effective

Address

D011

Description

ADDRESSABLE EDAC HARD ERROR TEST (DIAGEDAC)

(37 microseconds)
The Addressable EDAC Hard Error Test checks the Error Detection And
Correction (EDAC) logic used to detect all double bit errors and many
multiple bit errors in monolithic memory. It allows the user to
specify the address of the location to be used for the EDAC test.
This facilitates the testing of multiple monolithic memory pages.
Bits 0-15 of register R1 shall contain the check bit pattern to be
tested and bits 16-31 of register R1 shall contain the data bit
pattern to be tested. The 19-bit physical address, right-justified,
of the location to test shall be contained in bits 16-31 of register
R1+1 and bits 0-15 of register R1+2. At completion of this Diagnose,
a condition code of zero indicates the test passed and a negative
condition code indicates a failure. If an error occurs, the Diagnose
log out area shall contain the following data in the CPU Sector Zero
local store area:

RO - Data read back from halfword location
R1 = Not used

R2 - Diagnose Command Word (X'D011')

R3 = Error Code

X'98' - Hard Error expected,
Hard Error bit off
X'99' - Hard Error expected,
Soft Error bit on
R4 = MMU Fault Extension Register
(MFER) at end of test
Data Patterns used for test (R1)

R6/R7

The memory address used in this test must not be store protected.
Note: This test will delay any pending I/0 operation more than 6.1
microseconds and so should not be used in an operational environment
which does not control I/0 activity.

15-16

Hexadecimal
Contents of
Effective
Address

D100

Description

READ MONOLITHIC STORE PROTECT BITS (READSP)

(16.8 microseconds)
The Read Monolithic Store Protect Bits assist reads the store protect
bits from two monolithic memory halfuwords and places them in a
general register. Register R1 shall contain the 19-bit physical
address right-justified of the memory location from which the store
protect bits are to be read. This must be an even fullword boundary.
Register R1+1 shall contain the store protect bits read from the two
halfwords. The definition of the bits in R1+1 is described below:

Bits 0-12 Undefined

Bits 13-15 Redundant Store Protect Bits
for address in R1 (even HW)

Bits 16-21 Undefined

Bits 22-24 Redundant Store Protect Bits
for address in R1 plus one
‘(odd HW)

Bits 25-31 Undefined

The macrocode can use this Diagnose to determine which monolithic
memory locations are store protected and only checksum those
locations. Note: The store protect bits read are inverted. Zero
signifies a protected location. One signifies an unprotected
location. MNote: This test will delay any pending I/0 operation more
than 3.8 microseconds and so should not be executed in an operational
environment which does not control I/0 activity.

15-17

Hexadecimal
Contents of
Effective

Address

D200

Description

SET ECC BITS ASSIST (SETEDAC)

incorrect (or correct) ECC bits
which is not store protected.

(13 microseconds)
The Set ECC Bits assist allows the macrocode to force data with
in any monolithic memory location
Fullword register Rl shall contain the
19-bit address right-justified of the halfword location in monolithic
memory in which ECC is to be changed. Register R1+1 shall contain

the following:

Register
R1+1 bits Contents

0 Check bit X

1 Check bit 0

2 Check bit 1

3 Check bit 2

4 Check bit 4

5 Check bit 8

6 0

7 0

8 0

9]

10 0

11 1

12 0

13 1

14 0

15 0

16-31 16 bit data pattern to be stored
Check bit X is the XOR of data pattern bits 1, 2,
3' 5; 8' 9) 11) and 14.
Check bit 0 is the XOR of data pattern bits 0, 1,
2, 4, 6, 8, 10, and 12.
Check bit 1 is the XNOR of data pattern bits 0, 3,
4, 7, 9, 10, 13, and 15.
Check bit 2 is the XNOR of data pattern bits 0, 1,
5, 6, 7, 11, 12, and 13.
Check bit 4 is the XOR of data pattern bits 2, 3,
4, 5, 6, 7, 14, and 15.
Check bit 8 is the XOR of data pattern bits 8, 9,

10, 11, 12, 13, 14, and 15.

15-18

iexadecimal
Contents o¥f
Effective

Address

D200

D300

Description

(cont)

Note: For multibit errors, the corrected data produced by the EDAC
is unspecified. This assist cannot be used to restore monolithic
memory locations with incorrect ECC to correct ECC. Use the Reset
ECC Bits assist to restore correct ECC to a monolithic memory

location. This assist also disables scrubbing when executed. To
enable scrubbing, use the H-BUS Write command with the correct IIO
command and data. Note: This test will delay any pending 1I/0

operation more than 13 microseconds and so should not be executed in
an operational environment which does not control I/0 activity.
Note: To increase performance, this Diagnose does not purge the
pipe. So any prefetched data will not be affected by this Diagnose.
To detect errors on data which has been prefetched, execute a branch
after this Diagnose so that the data is fetched again.

RESET ECC BITS ASSIST (SETEDAC)

(8 microseconds)
The Reset ECC Bits assist allows the macrocode to force correct ECC
bits in any monolithic memory location which is not store protected.
Fullword register Rl shall contain the 19-bit address left-justified
of the halfword location in monolithic memory in which ECC is to be
restored. Bits 16-31 of register R1+1 shall contain the data to be
written into the monolithic memory location. This assist also
disables scrubbing when executed. To enable scrubbing, use the H-BUS
Write command with the correct II0 command and data. The correct ECC
bits shall be generated when the data is written if the MMU Mode
register does not have ID0 active. Note: This test will delay any
pending I/0 operation more than 8 microseconds and so should not be
executed in an operational environment which does not control I/0

activity.

15-19

Hexadecimal
Contents of
Effective

Address

EOOO

EA SCAN ASSISTS

The register set used with all EA SCAN ASSISTS contains the following
values in the general registers. These values will be used by the EA
in computing effective addresses.

RO - X'01060000° R4 - X'00040040°
R1 - X'FEF90000° R5 - X'00050050°
R2 - X'01060000° R6 - X'00060060°
R3 - X'01060000° R7 - X'00010000°

Only one instruction which reads store protect bits (store type) may
be included in an EA SCAN buffer. The store pending hardware will be
set when this instruction is decoded. But, since the instruction is
not executed, only decoded, a second instruction of this type will
cause the EA to stop until the first instruction has been executed.
This will cause Diagnose to hang and result in an Endop Timeout
Machine Check Interrupt. The Instruction Address in the 0ld PSW for
a Machine Check Interrupt which occurs during an EA SCAN ASSIST may
not be correct. The instructions placed in an EA SCAN buffer must be
selected and arranged with care. Any register conflicts, operand
conflicts, or pending stores will alter the results produced by the
EA SCAN ASSISTS.

Description

EA SCAN 1 ASSIST (EASCAN)

(21 microseconds)
The EA Scan 1 Assist allows the IU and EA to be stepped and the
selected scan register to be read. The IU and EA can each be stepped
from 0-15 times before scanning. Bits 0-15 of register R1 contains
the virtual address of the buffer of instructions to be used by the
assist. Register R1+l1 contains the scan command. The bits of the
scan command are defined belou.

Bits Contents

0-3 IU Step Count

4=-7 EA Step Count

8-15 Interrupt Page Scan Data
6-31 Interrupt Page Scan Command

The results of this scan assist can be read by EA Scan 5 Assist. The
execution time of this Diagnose is instruction buffer dependent.

15-20

Hexadecimal
Contents of
Effective

Address

E100

Description

EA SCAN 2 ASSIST (EASCAN2)

(22 microseconds)
The EA Scan 2 Assist allows the IU to run and the EA to be stepped.
For each EA step which produces a valid decoded opcode, the decoded
opcode, the halfword operand, the fullword operand, the left local
store, and the right local store are checksummed. Bits 0-15 of
register Rl contain the count of the number of valid decoded opcodes
to step. Bits 16-31 of register Rl contain the virtual address of
the buffer of instructions to be used by the assist. The checksums
produced by this assist are placed in the following CPU sector 7
registers:

Register Checksum

0,1 Fullword Operand

8 Decoded Opcode

9 Halfword Operand

10 Left Local Store

11 Right Local Store

These checksums can be read using the Local Store Read Diagnose. The
execution time of this Diagnose is instruction buffer dependent.

15-21

Hexadecimal
Contents of
Effective

Address

E200

E300

Description

EA SCAN 3 ASSIST (EASCAN)

(45 microseconds)
The EA Scan 3 Assist allows an IU or EA scan register to be read.
Then the IU and EA are stepped and the selected scan register is
read. The IU and EA can each be stepped from 0-15 times. The
results of the first scan are placed in local store CPU sector 7
registers 14 and 15. This data can be read using the Local Store
Read Diagnose. Bits 0-15 of register Rl contain the virtual address
of the buffer of instructions to be used by the assist. Register
R1+1 contains the second scan command. The bits of the scan command
are defined belowu:

Bits Contents

0-3 IU Step Count

4-7 EA Step Count

8-15 Interrupt Page Scan Data
16-31 Interrupt Page Scan Command

Bits 0-15 of register R1+2 contain bits 0-15 of the first scan
command. However, only bits 8-15 are used. Bits 16-31 of the first
scan command are the same as for the second scan command and are
contained in bits 16-31 of register R1+l1. The results of the second
scan can be read by EA Scan 5 Assist. The execution time of this
Diagnose is instruction buffer dependent.

EA SCAN 6 ASSIST (EASCAN2)

(21 microseconds)
The EA Scan 4 Assist allows the IU to run and the EA to be stepped.
For each EA step which produces a valid decoded opcode, the fullword
operand is checksummed. Bits 0-15 of register Rl contain the count
of the number of instructions to step. Bits 16-31 of register RI1
contain the virtual address of the buffer of instructions to be used

by the assist. The fullword operand checksum is placed in local
store CPU sector 7 registers 8 and 9. The checksum can be read using
the Local Store Read Diagnose. The execution time of this Diagnose

is instruction buffer dependent.

15-22

Hexadecimal
Contents of
Effective
Address

E301

Description

EA SCAN 5 ASSIST (CPUSREAD)

(18 microseconds)
The EA Scan 5 Assist allows the 32 bits of EA scan data to be read
from the Interrupt page. Register Rl will contain the 32 bits of
scan data at completion. The Interrupt page scan register is used
for scan data and also as the Interrupt page Diagnose Error register.
This register is cleared after reading. It should be read before
executing any Interrupt page self-test commands to clear the register
and after executing the self-test to see if any errors were detected.
The bits in the Interrupt Page Diagnose Error Register are defined
belouw:

Bit Description

0 Diagnose Register Fault

1 GP Register Fault

2 Unconditional Branch Test Fault

3 ALU Function Test Fault

4 Local Store Data Test Fault
-5 Local Store Addressing Test Fault

6 Conditional Branch Test Fault

7 POR Fault

8 Capture Register - High Group Fault

9 Capture Register - CPU Group Fault
10 Capture Register - Memory Group Fault
11 Capture Register - I/0 Group Fault
12 Capture Register - External Group Fault
13 0 (spare)
14 0 (spare)

15 Bad Parity Test Fault
16 Priority PLA Fault (Input = X'FF' Fails)
17 Priority PLA Fault (Input = X'7F' Fails)
18 Priority PLA Fault (Input = X'3F' Fails)
19 Priority PLA Fault (Input = X'1F' Fails)
20 Priority PLA Fault (Input = X'OF' Fails)
21 Priority PLA Fault (Input = X'07' Fails)
22 Priority PLA Fault (Input = X'03' Fails)
23 Priority PLA Fault (Input = X'01' Fails)
24 Command PLA Fault
25 0 (spare)
26 " Priority PLA Test 2 Fault
27 Priority PLA Test 3 Fault
28 Floating Point Overflow Fault
29 Fixed Point Overflow Fault
30 0 (spare)
31 Floating Point Underflow Fault

15-23

Hexadecimal
Contents of
Effective
Address

F100

F200

F300

Description

ENDOP TIMER TEST C(ENDOPINT)

(300 ‘'microseconds)
The ENDOP Timer test verifies the prorper operation of the ENDQP
timer. The ENDOP timer is reset and microcode waits to see if the
correct micro interrupt is generated when the timer times out. If
the timer does not time out in the proper time (200us) or the correct
micro interrupt is not generated, the condition code shall be set
negative. If the test passes the condition code shall be set =zero.
Note: This test will delay any pending interrupts more than 300
microsecends and so should not be executed in an operational
environment which can not tolerate this delay. Also, this Diagnose
Instruction cannot be macrostepped.

WAIT MICROCODE ASSIST (WAITMICR)

The Wait microcode assist causes all CPU memory operations to stop
until any macro or micro level interrupt occurs. Note: This
Diagnose Instruction cannot be macrostepped.

FORCE ROS PARITY ERROR ASSIST (FORCEROS)

(3.5 microseconds)
The Force ROS Parity Error Assist allows macrocode to force a ROS
parity error. The ROS parity error will only be forced if bits 0-15
of register Rl contain X'0001'. The condition code will be set zero.
The ROS parity error machine check interrupt can be masked by PSW bit
45, If it is masked, it will not remain pending and the computer
will not be reset. The reset of the computer on detection of the ROS
parity error can be inhibited by placing the interrupt page in
Diagnose Mode. 1In Diagnose Mode the machine check interrupt will not
be generated. '

15-24

The following descriptions define the hexadecimal value for the H-BUS II0 command
required to select each of the micro sequences. Only the diagnostic II0 commands
are described here. These commands are used by the H-BUS Read and Write commands.

H-BUS IIO
Command Description
1002 READ INTERRUPT PAGE LOCAL STORE REGISTER (READ)
(12.8 microseconds)

The read interrupt page local store register II0 command allows
macrocode to read the interrupt rage local store registers. Each
register is eight bits in length. The command reads two consecutive
registers. The table below describes the data to be sent with the
command and the registers which are read and placed in the general
register.

H-BUS Register Read

Data bits 0-7 bits 8-15

g6ooo0 RO R1

0001 R1 R2

06002 R2 R3

0003 R3 R4

0004 R4 R5

0005 R5 R6

0006 R6 R7

0007 R7 R8

0008 R8 R9

0009 R9 R10

000A R10 R11

000B R11 R12

goocC R12 R13

000D R13 R14

000E R14 R15

000F R15 RO

9011 INTERRUPT PAGE SELF-TEST (WRITE)

The interrupt page self-test IIO command allows macrocode to perform
various self-test microcode functions on the interrupt page. The
results of the self-test are placed in the scan register. This
register can be read by the macrocode via the EA SCAN 5 ASSIST
Diagnose. The register should be read to clear it before executing
the self-test. The table below describes the data to be sent with
the command and the function performed. The self-test is divided
into many small tests to meet the 50 microsecond interruptibility
requirement.

15-25

H-BUS
Data

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

Description

This subcommand verifies unconditional
branching, ALU functions and local
store register 15 data integrity.

(34 microseconds)

This subcommand verifies local store
register 0 and 1 data integrity.
(38 microsecoqu)

This subcommand verifies local store
register 2 and 3 data integrity.
(38 microseconds)

This subcommand verifies local store
register 4 and 5 data integrity.
(38 microseconds)

This subcommand verifies local store
register 6 and 7 data integrity.
(38 microseconds)

This subcommand verifies local store
register 8 and 9 data integrity.
(38 microseconds)

This subcommand verifies local store
register 0 addressing.
(24 microseconds)

This subcommand verifies local store
register 1 addressing.
(22 microseconds)

This subcommand verifies local store
register 2 addressing.
(39 microseconds)

This subcommand verifies local store
register 3 addressing.
(36 microseconds)

This subcommand verifies local store
register 4 addressing.
(33 microseconds)

This subcommand verifies local store

register 5 and 6 addressing.
(41 microseconds)

15-26

H-BUS

Data Description
go0ocC This subcommand verifies local store

register 7 and 8 addressing.
(33 microseconds)

000D This subcommand verifies local store
register 9, 10, and 11 addressing.
(36 microseconds)

000E This subcommand verifies local store
register 12 and 13 addr9551ng
(16.2 microseconds)

000F This subcommand verifies the
conditional branching function.
(32 microseconds)

8000 This subcommand verifies the parity
circuits on the command PLA, the
priority PLA, and the control store.
This subcommand also verifies the
operation of a portion of the priority
PLA.

(27 microseconds)

3100 This subcommand verifies the operation
of the capture register. Any pending
interrupts will be lost when this
subcommand is executed. Note: Since any
rpending interrupts are lost, it may not
be possible to macrostop when executing
this Diagnose.
(335 microseconds)

8200 This subcommand verifies the operation
of a portion of the priority PLA.
(29 microseconds)

8C00 This subcommand verifies local store
register 10 and 11 data integrity.
(38 microseconds)

8D00 This subcommand verifies local store
register 12 and 13 data integrity.
(38 microseconds)

8EDD This subcommand verifies local store

register 14 data integrity.
(23 microseconds)

15-27 .

H-BUS

Data Description
8F00 This subcommand verifies the operation

of a portion of the priority PLA.
(28 microseconds)

15-28

H-BUS IIO

Command

9013

901¢

Description

SET/RESET INTERRUPT PAGE DIAGNOSE MODE (WRITE)
(6.6 microseconds)

The set/reset interrupt page Diagnose mode II0 command allows
macrocode to place the interrupt page in, or remove it from diagnose
mode. MWhen in diagnose mode, the interrupt page will not reset the
computer when it detects a crash interrupt condition. Also, the ROS
parity error, and the Endop Timeout machine check interrupts will not
be generated. If the data sent with the command is nonzero, the page
will be placed in diagnose mode. If the data sent with the command
is zero, the page will be removed from diagnose mode.

START INTERRUPT PRIORITY MICROCODE TEST (WRITE)

The Start Interrupt Priority Test II0 command sets all of the valid
interrupts in the External Pending Interrupt Register. Also, the two
interval timers are set pending. Interrupt processing will then
proceed in the normal manner. Any pending interrupts will be lost
when this command is executed.

The following interrupts are set in the External Pending Interrupt
Register:

External
External
External
External
External
AGE

The following interrupts are set in I/0 Interrupt Register:

WO

Timer A
Timer B

Note: Timer A and B interrupts only become macro interrupts if
location BO and Bl, respectively, equal zero.

15-29

H-BUS IIO

Command Description
9407 LOAD MMU MODE REGISTER (WRITE)

(4.3 microseconds)
The Load MMU Mode Register II0 command allows the operation of the
MMU and the various memory options to be selected. The definition of
the bits in the MMU Mode Register is presented below:

Bit Description

6 Inhibit memory accesses from all sources except EX
7 Inhibit all memory error interrupts
8 BSE Disable

9 Insert store protect bits

10 Transmit Disable

11 System IPL

12 Passthrough mode

13 Gate syndrome/check bits to data bus

14 Code IDO

15 Disable scrubbing

Bits 6-15 of the data word sent with this command will be loaded into
the MMU Mode register.

15-30

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST

CODE DESCRIPTION SHEET NAME
01 |RTCC Register 5's Pattern Fail ubD34 RTCC
02 |[RTCC Register A's Pattern Fail ubn34 RTCC
03 |Constant Prom Checksum Fail | un2s CPROM
06 |2way Branch On YBUS Bit 11 Fail | UD51 XWAYBR
05 |2way Branch On YBUS Bit 12 Fail UD51 XWAYBR
06 |2way Branch On YBUS Bit 13 Fail uDps2 XWAYBR
07 |2way Branch On YBUS Bit 14 Fail uDns2 XWAYBR
08 |2way Branch On YBUS Bit 15 Fail UD52 XWAYBR
09 |4way Branch On YBUS Bits 12,13 uD53 XWAYBR
0A |4way Branch On YBUS Bits 14,15 uDns3 XWAYBR
0B (l6way Branch On YBUS Bits 8-11 UD54 XWAYBR
0C |l6way Branch On YBUS Bits 12-15 UDS54 XWAYBR
0D |Local Store Adr Forced CPUSECO uD95s LSADR .
0E jLocal Store Adr Forced CONSECO UD9é LSADR
OF [Local Store Adr Direct CONSEC15 UD96 LSADR
10 |Local Store Adr Indirct CONSEC15| UD96 LSADR
11 |ls Adr CPUSEC Direct # Forced UD9%7 e LSADR
12' |Ls Adr CONSEC Direct # Forced uD98 ™ 7 |LSADR
13 |Even Adr FW Write HW Read UE55 HCMEMTST
14 |Even Adr FW Write Odd HW Read UES5 HCMEMTST
15 jTwo HW Writes FW Read Even Adr UE56 HCMEMTST
19 |FW Write Read 0dd Adr UES6 HCMEMTST
1A |Two HW Writes FW Read 0dd Adr UE60 HCMEMTST
1B |2way Branch On ASTAT3 Fail UE18 STATBR
1C |2way Branch On ASTAT2 Fail UE18 STATBR
1D |2way Branch On ASTAT1 Fail UE19 STATBR
1E [2way Branch On ASTATO Fail UE1l9 STATBR
1F |4way Branch On ASTAT45 Fail UE21 STATBR
20 |4way Branch On ASTAT67 Fail UE21 STATBR
21 |Logical/Physical Adr Error UE61 HCMEMTST
22 |Store Protect Bits Incorrect UE62 HCMEMTST
30 |{EI # EPEMIT Or EXZERO Fail UE27 EXHARD
31 |EI=EI+1 Or EXZERO Fail UE27 EXHARD
32 |EI=EI+EPEMIT Or EXSIGN Fail UE27 EXHARD
33 |EXCRY Fail UE27 EXHARD
34 EXSIGN Fail UE28 EXHARD
35 EXCRY Fail. UE28 EXHARD
36 |EA=EI,EB=EI,ES=EA+EB Or Reg Fail| UE28 EXHARD
37 |EA=EPEMIT Or EA=EA+EPEMIT Fail UE29 EXHARD
38 |EA carry Or ES=EIZEPEMIT Fail UE29 EXHARD
39 {EA Effects EI UE29 EXHARD

15-31

AP-1015 DIAGNOSTIC ERROR CODES

ERROR CLD TEST
CODE DESCRIPTION SHEET NAME

3A |EA Effects EB UE3D EXHARD
3B |EB=EB-1 Fail UE30 EXHARD

_ 3C |EB=F00-07 Fail UE30 EXHARD
3D |EB Effects EA UVE31 EXHARD
3F |EA=F00-07 Fail , UE31 EXHARD
40 |EI=EIZEPEMIT Fail VE32 EXHARD
41 |EASEA-EB Fail VE32 EXHARD
42 |EA=F24-31;INV Fail UE32 EXHARD
43 |EB=f24-31;INV Fail VE33 EXHARD
44 |EI=EA-EB Fail UE33 EXHARD
45 |EASEA(L1) Fail UE33 EXHARD
46 |EI=EI+2 Fail UE33 EXHARD
47 |EI=EI-2 Fail UE34 EXHARD
48 |EI=EA Fail UE34% EXHARD
49 |EI=EPEMIT Of EB=F00-07;EI=EPEMIT| UE34 EXHARD
4A |EB=F00-07 Of EB=F00-07;EI=EPEMIT| UE34 EXHARD
4B |EI=EI-1 Fail - UE28 EXHARD
4C |EI=INB0815 Fail UE34 EXHARD
4D |WLS=Y(FW, EXALU, MMPs/1750) Fail | UE34 EXHARD
50 |FA 2 0 Or FZERD Fail UE35 FRXHARD
51 |[FB # 0 UE3S5 FRXHARD
52 |[FC # 0 UE35 FRXHARD
53 |FA # F,LS Addr, AI+BI Or FCRY UE36 FRXHARD
54 |FA Effects FB UE36 FRXHARD
55 |FA Effects FC UE36 FRXHARD
56 |FB # F UE36 FRXHARD
57 |FB Effects FA Or FC UE36 FRXHARD
58 |FSIGN1 Fail UE3? FRXHARD
59 |FC Effects FA Or FB UE3? FRXHARD
5A YoV Fail UE37 FRXHARD
5B |FZERO With Overflow Fail VE37 FRXHARD
5C |AI+AI Or Guard Bit Fail UVE3? FRXHARD
5D |Shift Right 2 Or FNORM Fail VE3?7 FRXHARD
5E |FANORM Fail UE38 FRXHARD
SF |FA # F HW Fail UE338 FRXHARD
60 |Bits 16=-31 # 0 HW UE38 FRXHARD
61 |Y MUX CONTROL Or ENABLE Fail UE38 FRXHARD
63 |FC Shift/Rotate Fail UE39 | FRXHARD
64 |FA31=FC00 Of FA31=FC00;FC31=FC32{ UE39 FRXHARD
65 |FC31=FC32 Of FA31=FC00;FC31=FC32| UE39 FRXHARD

15-32

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST
CODE DESCRIPTION SHEET NAME
66 |FAOO=FA-1 Of FAOO=FA-1;FCO00=FA31l]| UE40 FRXHARD
67 |[FCO0=FA31 Of FAO00=FA-1;FCO00=FA31| UE40 FRXHARD
68 |FA=Y Of FA=Y;FC=FCI Fail UE40 FRXHARD
69 |FC=FCI O0f FA=Y;FC=FCI Fail UE40 FRXHARD
6A |RDEXPALU Or BI=INBUS Fail UE41 FRXHARD
6B |FIO, FL8, FB=FB(R1) Fail UE41 FRXHARD
6C |FA=(Z,2); FC=FCI Fail UE¢41 : FRXHARD
6D |[FCI=FC(R2) Fail UE41 FRXHARD
70 |EDAC Error During Reset UD71 EDACTEST
80 |Local Store R/W LLS Pat 1 UD46,48 LSMICRO
81 |Local Store R/W LLS#RLS Pat 1 |UD46,48 LSMICRO
82 |Local Store R/W RLS Pat 2 UD46,48 LSMICRO
83 |Local Store R/W RLS#LLS Pat 2 |UD47,49 LSMICRO
84 |EU PC Fail On X'5555' Pattern UD40 EUPCTST
85 |EU PC Fail On x'AAAA' Pattern UD40 EUPCTST
86 |EU PC Increment Fail UD40 EUPCTST
90 [Memory R/W Data Pattern 1 UDé5 WRCCORE
91 [Memory R/W Check/SP Pattern 1 UDé5 WRCCORE
98 |EDAC Hard Error Bit Not On UD74 EDACTEST
99 |EDAC Unexpected Soft Error UD74 EDACTEST
9A |EDAC Unexpected Hard Error UD74 EDACTEST
9B |EDAC Soft Error Bit Not On ub75 EDACTEST
9C |EDAC Soft Error Not Corrected uD75 EDACTEST
A0 [Memory Protect RAM, Pattern 1 UEO09 DIAGMPPR
Al [Memory Protect RAM, Pattern 2 UEOD9 DIAGMPPR
A2 |Inst-Page Reg RAM, Pattern 1 UEOD9 DIAGMPPR
A3 |Inst-Page Reg RAM, Pattern 2 UEO9 DIAGMPPR
A4 |Opnd-Page Reg RAM, Pattern 1 UEO9 DIAGMPPR
A5 |0Opnd-Page Reg RAM, Pattern 2 UED9 DIAGMPPR
A7 |BSR/DSR - PS/AS Test Failed UE23 DIAGBSRP
B0 |Interval Timer A Test -SIB UD94% ITMATST
F6 |Interrupt Page Failure - UE49 HCSREAD
FC reg is Int Page Diag Err Reg
F7 |ROS Parity Test Failure UEO03 INTCRASH
F8 |ENDOP Timer Test Failure UEO3 INTCRASH
F9 |DSE Test Failure UE71 DSETEST
FB |Intr Page HBUS Wrap (INBUS) Fail| UD87 IHBUSWRP

15-33

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST
CODE DESCRIPTION SHEET NAME
FC |Intr Page HBUS Wrap (HBUS) Fail uD8é IHBUSWRP
FD |Operand (FW) Checksum Fail UD39 HEASCAN2
FE [LLS & RLS Checksum Fail uD39 HEASCAN2
FF |Opcode & Operand Checksum Fail uUD39 HEASCAN2

15-34

16.0 PIPELINE TIMING CONSIDERATIONS

The AP-101S computer is a pipelined machine which exhibits significant throughput
improvement over nonpipelined sequential machines. The pipeline which is involved
is based on prefetching both instructions and operands from memory. Instructions
and operands are prefetched assuming sequential instruction execution. This means
that as long as the sequence of instruction execution is not altered, all prefetched
information will be used.

Some branch instructions alter the sequence of execution, and therefore nullify any
prefetched information. The time required to restart the pipeline in this case may
be directly attributed to the branch instruction. Instruction execution times for
branch instructions include all overhead required to restart the pipeline, if the
order of execution is altered.

Other factors also exist which have an impact on the throughput of the pipeline.
These factors may not be attributed directly to any one instruction in general,
rather they are a function of the order and relationship of instruction execution.
Three factors may be classified as follows:

Register conflict Modification of base or index register
needed to prefetch an operand

Store conflict Modification of prefetched operand

I unit hazard Modification of prefetched instruction

Instruction execution times do not include any overhead due to these factors. Any
penalty in execution time must be considered independent of instruction execution
time. The total time required to execute a given sequence of instructions must

include any applicable penalty due to these factors.

It is for this reason that a separate description of conflicts and hazards is
presented. Not only will this description explain the various conflicts and hazards
as previously mentioned, it will also discuss how the conflicts and hazards are
resolved and what the execution time impact is associated with these events.
Furthermore, numerous conditions, such as branching and store instructions, will be
discussed with an emphasis on pipeline operation. Instructions of this type change
the nature of pipeline processing near that instruction, but are not a conflict or
hazard. In order to aid understanding of the AP-101S computer and the pipeline,
these instructions have been included in this discussion. Any execution time
impacts due to the pipeline have already been included in the stated instruction
execution times.

16.1 INSTRUCTION EXECUTION - PIPELINE BASICS

Every instruction requires at least four stages in order to execute. First, the
instruction must be read from memory during the instruction fetch stage. Second,
the instruction must be decoded both in terms of what type of operation is specified
(add, multiply, shift, etc.) and the effective address of the second operand must be

16-1

computed. HNext, the second operand is read from memory using the effective address
(EA) during the operand fetch stage. Finally, the instruction may be executed,
generally resulting in modification of the general purpose registers. In the case
of the AP-101S computer, two additional stages are required in support of the memory
references. Since the AP-101S5 utilizes expanded addressing, an additional stage of
address translation is required for every memory operation. Therefore, an
instruction address translation stage and operand address translation stage are
required. Figure 16-1 shows the relationship between all six stages of the AP-101S
computer.

Each stage represents a specific function which is relatively independent of the
other functions, except for the given time relationship. It is this independence
and the timing sequence which permits the construction of a six stage pipeline.
Within the pipeline, each function, or stage, is contained and controlled completely
by an independent hardware element. The timing relationship between an instruction
and each hardware element is shown in Figure 16-2.

The advantage of using a pipelined organization is obvious when considering the
execution of three simple instructions. Figure 16-3 indicates that a total of 18
machine cycles would be required for a sequential machine to execute just three
instructions, assuming that eacin stage of the instruction could be completed in a
single machine cycle. Each hardware element is capable of independent operation,
which permits pipeline operation as shown in the figure. Notice that a total of 8

machine cycles are required to execute three instructions. Considering pizeline
operation for a sequence of a single type of instruction yields the mear time
required to execute that instruction. The example shown is for an RS format
instruction. If the example were extended indefinitely, the execution time would

average to 2 cycles per instruction. Completing a similar pipeline chart for SRS
instructions would indicate 1.5 cycles per instruction, and 1 cycle for RR format
instructions. For the AP-101S computer, the pipeline cycle time is 0.250
microseconds.

16.2 LONG INSTRUCTIONS - NON-SINGLE-CYCLE EXECUTION

Not all instructions may be executed by the execution unit within a single pipeline
cycle. These instructions, referred to as long instructions, force the pipeline to
stop while execution proceeds, as indicated in Figure 16-4. This is actually
accomplished by postponing further EA calculations until the last machine cycle of
the long instruction. Instruction execution times as indicated include any effects
of long instructions, as necessary. Notice that even though the pipeline waits for
a number of cycles, there are no unused cycles in the execution unit.

16.3 BRANCH INSTRUCTIONS - RESTART THE PIPELINE

Branch instructions, as previously discussed, cause any prefetched information to be

discarded and the pipeline must be restarted. The branch instruction shown in
Figure 16-5 indicates that 3 machine cycles within the execution unit are unused
during the pipeline restart. Also, notice that the target instruction has

S 16-2

Instruction Execution

Instruction

. Decode .
Instruction T4 Operand Instruction

Fetch Op;l:nd Fetch Execution

Generation

With Expanded Address Generation (Transiation)

Instruction
Instruction Instruction DeiOde Operand Operand Instruction
Address Operand Address
Translation Fetch EA Translation Fetch Execution
Generation
Figure 16-1. Dissection of Instruction
o Sequence of 6 functions —6 stage pipeline
o Independent hardware per stage/function
Instruction Instruction Instruction Operand Operand Instruction
Hardware Address Fetch Decode Address Fetch Execute
Element Translate EA Gen Translate
IX
IF
EA
ox —
oF lil

Figure 16-2. Pipeline Hardware Elements

16-3

o Consider the instruction sequence 1,2,3
o Seguential machine operation is:

IX 1IF_JEA Jox 1oF Jex hix |iF
1 1 1 1 1 1 2 2

EAI
2

. |ea_ox_|oF_|ex
e e

6 cycles x 3 instructions = 18 cycles to complete 3 instructions

o Pipeline machine execution is:

8 cycles to complete 3 instructions

i [1%, 1%

IF R P L

€A [EA1[EA, |54

ox [0%,0%,] 9%,

oF |oF | [OF, |°F4 |
EX

5% 15Xl

Therefore, over a period of time, pipelined instructions would average:

cooo0

LOC

L+2
L+4
L+6

2 cycles / RS instruction
1.5 cycles / SRS instruction
1 cycle / RR instruction

Figure 16-3.

INSTR

AE

EALua

OxL+2

OF

Not a hazard or conflict
Instructions which require more than 1 pipeline cycle to execute
Postpones EA calculations until end of instruction

(SHORT FLT PU ADD)

. WAIT

‘OXL+4

OF 42

EX

Figure 16-6.

EAL+6

LY T ——

Long Instruction

16-4

oX

Pipeline Advantage

L+6

EX

L+2.

OF L |

EX +a I EXL 46

o Not a hazard or conflict
o Harmful to pipeline throughput — 3 cycles to restart

o Example:
Loc INSTR
B BC, T
B+2
T
| o |
OXg oXT
Instr@ T s
OF
InsB ®T ' , OFr l

! !
Unused : Unused | EXT I
|

l EXB l Unused

Branch ‘

Figure 16-5. Branch Taken

previously been prefetched by the EA unit in order to minimize the restart time. If
a conditional branch is not taken, then the pipeline is not restarted. Indicated
instruction execution times include all effects of restarting the pipeline.

16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER

Register conflicts can only occur for instructions which use either a base or an
index register to compute the effective address of a memory operand. A conflict
arises if a preceding instruction (within three instructions) modifies the contents
of the register which is used for the base or index value. In order to minimize the
penalty involved, register conflicts are detected and totally controlled by harduare
resources. EA unit operation is postponed, as shown in Figure 16-6, until the
register involved has been loaded with the correct value. At most, three machine
cycles will be unused by the EA unit while waiting for valid register data. This
results in three unused machine cycles in the execution unit hardware. This penalty
will decrease, depending upon the number of instructions between the
register-modifying instruction and the register-using instruction. Any penalty
involved with register conflicts has not been included with the stated instruction
execution times, and must be. evaluated separately if necessary.

16-5

o Caused by loading & using a base/index register within 3 instructions
o Detected and handled by hardware
o Forces sequential instruction execution within pipeline
0 Postpones fetch of base/index register by 1, 2, or 3 cycles
0 Example:
Loc INSTR
R AHR R3, R5
R+1 M R1, ADDR(R3)
R+3 —_—
R3 1 1 | EA
EA Conflict | 1 R+1 EA - -
R Detected | 1 i R3used R+3
Unused IOXRH -
| Unused | OFR4q | ===
| |
EXg Unused : Unused : Unused | EXg | ===

R3
Modified

Figure 16-6. Register Conflict

16.5 STORE INSTRUCTIONS - MULTIPLE MEMORY CYCLES

The pipeline structure has been implemented to maximize performance for memory read
operations. Memory write operations do not fit into the same pipeline structure as
read operations and, as a result, the pipeline is disturbed in the area of a store
instruction. Figure 16-7 indicates that two additional memory cycles are needed to
perform the actual memory write operation. Also notice that the EA unit performs a
pre-read of the memory location in order to assist the memory management unit in
storage protection error detection. At most, two cycles will be unavailable for
instruction execution due to this pipeline disturbance. The actual number of cycles
lost is dependent upon the nature of the instruction following the store
instruction. Therefore, the instruction execution time presented for store
instructions is a typical value. The corresponding note for applicable store
instructions indicates some criteria for determining the exact time required to
execute a specific store instruction. Only simple store instructions operate in
this fashion. These are; ST, STH, STE and STB.

16.6 STORE CONFLICT - MODIFY PREFETCHED MEMORY OPERAND

Store conflicts are a result of prefetching operands from memory. An operand

16-6

o Not a hazard or conflict
o Causes additional 2 cycle delay due to memory — total execution .75 —> .25 us
o Example:

LOC INSTR
w ST ADDR
W+2 AR R3,R4
w+3 L
w+4 L
W+5
EA EA EA EA Wait for EA
w W+2 W+3 W+4 Memory W+5
[0)4 oX OX oX (0)4 0X
w W+2 W+3 w -Busy- W+4 W+5
Preread Store
OF OF OF OF OF OF OF
w W+2 W+3 w Wl wa W+5
Preread Store Store
EX EX Extend- EX EX wXx
w W+2 | Do Not W+3 Unused W+4 W45
Update PC
Used if EX is Used if EX is
W+2 W+2
at least 2 cycles at least 4 cycles

Figure 16-7. Store Instruction

prefetch for a load instruction will actually occur before the memory write is done
for a store instruction which precedes the load. If the load and store instructions
involve the same memory address, then the operand prefetch for the load instruction
must be postponed until the memory write is completed, as shown in Figure 16-8.
(The operand fetch actually occurs, houever, the data is discarded). In order to
minimize the penalty involved, store conflicts are detected and totally controlled
by harduare resources. Any penalty involved with store conflicts has not been
included with the stated instruction times, and must be evaluated separately if
necessary. Store conflicts are applicable for simple store instructions only.

The store conflict hardware has been simplified somewhat by assuming that all memory
operations involve two locations, or 32 bits. Therefore, the conflicting
instructions only need to deal with memory locations which are within one location
of each other in order to cause the detection of a store conflict. Furthermore,
store conflicts are detected on the 16 bit logical address, and not the 19 bit
physical address. In order to guarantee proper operation with expanded memory
addressing, store conflicts are detected on the 15 least significant bits of the
logical address. Addresses 7FFF and 0000 are considered to be contiguous, as are
addresses FFFF and 8000. At most, two machine cycles will be lost while the operand
fetch is postponed. This penalty will decrease to one machine cycle if one other
instruction is executed between the conflicting instructions. No conflict will
exist if there are two or more intervening instructions.

16-7

o Caused by store with successive load from memory within 2 instructions
o Detected and handled by hardware

o Example:
Loc INSTR
w ST ADDR
W+2 L ADDR
W+4 em———
St : W
ore | ait
EA EA Conflict 1 1 for EA
w W+2 | Detected { Memory W+4
oX ox ox
ox W+2 (XVI*'Z w Busy X a2 [ox
w (wasted) wa:t‘; d) Store (oooo) | W+
OF OF OF OF OF
OF W+2 (XY:O2 w w w+2 |oF
w (wasted) wasted) Store Store (0ooo0) W+4
EX Normal Normal |EX EX
w Unused | gtore Unused | giore W+2 W+4

A B8 Unused due to timing N
of the store instruction

Figure 16-8. Store Conflict

16.7 SUCCESSIVE STORES - BACK-TO-BACK STORES

The execution unit of the CPU contains a store pending register which holds the
memory address for simple store instructions. Since only one register exists, only
one store instruction can reside in the pipeline at one time. Figure 16-9 indicates
that processing by the EA unit for the second store instruction is postponed until
the memory write for the first store instruction has been initiated. This situation
is not a conflict or hazard, it is only a limitation of the harduare. The
guidelines associated with store instruction execution times includes a case for a
successive store condition. A penalty of 2 machine cycles has been included with
the execution time of the first store instruction. This penalty will decrease to
one machine cycle if one other instruction is executed between +the store
instructions. No penalty exists if there are two or more intervening instructions.
The penalty for successive stores is applicable only for simple store instructions.

16.8 I UNIT HAZARD - MODIFICATION OF PREFETCHED INSTRUCTION

An I unit C(instruction fetch unit) hazard is the result of a store instruction which
modifies memory in the immediate area of the current instruction. The I unit can be
at most 22 memory locations ahead of the current instruction. If a store

16-8

o Caused by consecutive store instructions within 2 instructions
o Detected & handled by hardware
o Due to existence of one address register for CPU stores

Example: Loc INSTR
W ST ADDR X
W+2 . ST ADDR Y (2 cycles lost)
W-+4
q H i |
Successivej : i |
Stores =b=— ¢ e
E_AW Detected | : ; i EAW+2
oX OXw- Busy]JOX
w Store . W+2
OF OF
: W W
OFW Store Store OFW+2
Normal Nonﬁm
EXW Unused | giore | Unused | Siore EXW+2
Store pending
register active

Unused due to timing
of the store instruction

Figure 16-9. Successive Stores

instruction writes to memory in the area from which the I unit may have already
prefetched instructions, then an 1 unit hazard exists. The actual detection
circuitry uses the range of IC-1 to IC+23 in order to indicate an I unit hazard.
Once a hazard has been detected, the entire pipeline is discarded and restarted from
the location following the current instruction, as indicated in Figure 16-10.

I unit hazards are detected on the 16 bit logical address, and not the 19 bit
physical address. In order to guarantee proper operation with expanded memory
addressing, I unit hazards are detected on the 15 least significant bits of the
logical address. Addresses 7FFF and 0000 are considered to be contiguous, as are
addresses FFFF and 8000.

The I wunit hazard circuitry is provided in order to guard against self-modifying
codae. This circuitry forces a restart of the pipeline to guarantee that the proper
instructions, including modified instructions, are executed. However, it is
possible to modify a data location at the end of a program segment and cause an I
~unit hazard. The I unit hazard circuitry cannot distinguish between memory used for
instructions as opposed to data. Therefore, any store within the indicated range
Wwill cause an I unit hazard condition whether it is real or not.

16.9 CONFLICT/HAZARD SUMMARY

All effects of the pipeline on instruction execution times have been included with
the indicated times except for register conflicts, store conflicts, and I unit

16-9

o Caused by a store into memory within the immediate area o
of the current instruction (-1 <> PC © +23) . y.

o Forces a restart of the |-unit and pipeline

o Detected by hardware. Handled by microcode

Exampile: LOC INSTR
w ST ADDR+23
W42 ———
IX |
W+2
| wel
W+2
"] =]
:) W+2
IOX I ox I
w W+2
. sl
w W42
EX :
w EX I
w W+2
’ Microcode 2.25 us
]‘1 Lost due to restart >|
. 14 cycles @ 250 ns = 3.5 us
Figure 16-10. I Unit Hazard e

hazards. Below is a summary of the penalties involved with each.

Number of Intervening Instructions

0 instr 1 instr 2 instr
Register Conflict .75 us .50 us .25 us
Store Conflict .50 us .25 us ————

Independent of Intervening Instructions

I Unit Hazard 3.50 us

16-10

17.0

AP-101S INSTRUCTION EXECUTION TIMES

All floating point execution times have been rounded up to the nearest multiple of
250 nanoseconds and are based on the following assumptions:

Neither operand is zero, and for the long (64-bit) instructions neither hi
or low words of an operand is zero.

All results will require normalization of 8 bits (2 hex digits).

All operands are normalized, hence prenormalization of the divisor in the
divide instructions is unnecessary.

For instructions requiring prealignment (Add, Subtract, Compare) the
di fference in exponents will be 4.

Operands will not be the same signs (except for the COMPARE instructions
in which operands will have identical signs).

17-1

INSTRUCTION EXECUTION TIME IN US
Mp NORMAL DOUBLE INDIRECTION AUTO AUTO
INSTRUCTION ADDRESSING Xc=0 | XC=0 | Xc=1 | Xc=1 STORAGE INDEXING
MODES C=0|C=1|cC=0{cC=1/|HMODIFICATION

A RS .250 4.5 | 4.25 | 4.25 | 4.25 | 5.5 7.25
A SRS .250 _— | —_ | — | — — —
AE RS 2.50 6.75 | 6.5 | 6.5 | 6.5 7.5 9.0
AE SRS 2.50 —_ | — — e —_
AED RS 6.50 10.5 | 10.25| 10.25| 10.25| 11.5 13.25
AEDR RR 6.25 _— | —_— | - | — — —_—
AER RR 2.25 _— | —_— | - | — —_ —_—
AH RS .250 4.50 | 4.25 | 4.25 | 4.25 | 5.50 7.0
AH SRS .250 —_ | —_— |- | — —_ —
AHI RI .250 —_ | —_— | - | - _— —_
AR RR .250 —_ |- | - | — —_ —_—
AST RS .750 6.0 | 7.0 | 5.75 | 7.0 8.25 10.25
BAL RS 3.75 7.0 [10.0 | 6.75 |10.0 8.0 9.5
BALR RR BT=3.50; BNT=4.50 —_ |- |- | — —_ —
BC RS BT=1.25; BNT=.250 4.25 | 7.25 | 4.0 | 7.25 | s.25 6.25
BCB SRS .250 —_— |- | — | — — —-
BCF SRS .250 _— | —_) — | — - —
BCR RR .250 —_ | = | - — —_—
BCRE RR BT=5.75; BNT=.50 —_ |- |- | — — —
BUT RS BT=1.75; BNT=.750 4.5 | 7.5 |4.25 | 7.5 5.5 7.0
BLTB SRS BT=1.75; BNT=.750 —_ |- | - | — —_ —
BCTR RR BT=1.75; BNT=.750 T I IS p— _ —_
BIX RS BT=2.5; BNT=1.5 5.7 | 8.7 | 5.5 | 8.75 | 6.75 8.25
BVC RS BT=1.25; BNT=.50 4.0 | 7.0 | 3.75 | 7.0 5.0 6.5
BVCF SRS BT=1.25; BNT=.50 —_ | —-— | - | — —_ —_
BVCR RR BT=1.25; BNT=.50 —_ | —_ |- | — —_ —_—
c RS .250 4.5 | 6.25 | 4.25 | .25 | 5.5 7.25
c SRS .250 —_ | —_ | — | — —_— —_—
CBL RR AVE. = 5.0 —_ | — | — | — — —
CE RS 1.75 6.0 | 5.75 | 5.75 | 5.75 | 6.75 8.5
CED RS 5.75 9.75 | 9.5 | 9.5 | 9.5 10.75 12.5
CEDR RR 5.50 —_ - |- | - —_— —
CER RR 1.50 —_—— - | - — —
CH RS .250 4.50 | 4.25 | 4.25 | 4.25 | 5.50 7.0
CH SRS .250 —_ | — | — | — — -
CHI RI .250 —_— |- | — | — — —_—
c1st .sI 1.5 _— | —_— | — | — — —
CR RR .250 —_ | — | — | — —_— —
CVFL RR 1.75 —_— | — | — | — —_— —
CVFX RR 2.25 —_— | —_ | — | — — —_—
D RS (R1 EVEN) AVE. = 4.925 9.05 | 8.8 | 8.8 | 8.8 | 10.05 11.8
D RS (R1 0DD) AVG. = 64.675 8.8 | 7.55 | 7.55 | 7.55 | 9.8 10.05
D SRS (R1 EVEN) AVG. = 4.925 —_ | —_- |- | — —_ o
D SRS (R1 0DD) AV6. = 4.675 —_ | —_— |- | — _ —
DE RS 7.50 12 | 11.5 | 11.5 | 11.5 | 12.75 15.25
DE SRS 7.50 —_— | —_ | — | — — —
DED RS 23.00 27.75| 27.75| 27.75(27.75| 28.75 29.75
DEDR RR 22.75 —_ | —_— |- | — _— —
DER RR 7.25 —_— | —_— | — | — —_— —_—
DIAG RS SEE POO T [[ESESE — —_ —
DR RR (Rl EVEN) AVG. = 4.925 —_ || —- |- | — — —_—
DR RR (R1 0DD) AVG. = 4.675 —_ - |- | - _ _
IAL RS .50 4.0 [5.0 | 3.75]| 5.0 6.25 8.0
IAL SRS .50 _ | —_— - | — —_ —
ICR RR COMMAND DEPENDENT _—— | = | — o —_
THL RS .50 4.75 | 4.50 | 4.50 | 4.50 | 5.75 7.25
1SPB RS (R1 = 0) 5.625 8.0 | 9.0 |7.75] 9.0 [10.25 12.0
1SPB RS (Rl = 1) 5.625 8.0 | 9.0 |7.75 | 9.0 | 10.25 12.0
1SPB RS (Rl = 2) 5.625 8.0 | 9.0 | 7.75 | 9.0 | 10.25 12.0
1SPB RS (Rl = 3) 5.625 8.0 | 9.0 | 7.75 | 9.0 | 10.25 12.0

17-2

INSTRUCTION EXECUTION TIME IN US

MMP NORMAL DOUBLE INDIRECTION AUTO AUTO
INSTRUCTION ADDRESSING XC=0 XC=0 | XC=1 | XC=1 STORAGE INDEXING
MODES C =0 C =1 C =0 C =1 MODIFICATION
ISPB RS (Rl =5) .125 — —_— — — — s
ISPB RS (R1 = 6) .125 — — — — — —
IsPB RS (R1 =7) 125 — — — — —
L RS .250 4.5 $.25 4.25 4.25 5.5 7.25
L SRS .250 — e — — — —
LA RS .250 4.0 5.0 3.75 5.0 6.25 8.0
LA SRS .250 — — — s — —
LCR RR .50 —_— — e — —_— C —
LDM RS 6.75 10.0 10.0 10.0 10.0 10.25 10.25
LE RS 1.20 5.0 4.75 | 4.75 | 4.75 5.75 8.5
LE SRS 1.20 — — — — — —_—
LECR RR, 1.00 — —_— — — — —_—
LED RS 1.50 5.5 5.0 5.0 5.0 6.25 8.75
LER RR 1.00 —— —— ——— e — —
LFLI RR .750 — R — — — —_—
LFLR RR .750 — — — — R —
LFXI RR .750 — e e — — —_—
LFXR RR .750 — e — e —_— e
LH RS .250 4.50 | 4.25 | 64.25 | 4.25 5.50 7.0
LH SRS .250 — s — s s —
LM RS 8.5 12.25 |13.25 |12.0 [13.25 | 14.5 16.25
LPS RS 10.25 13.25 [14.25 |13.0 |14.25 | 15.5 17.25
LR RR .250 e s o s e ——
LXA RR 3.50 (=1.25 for early out) | = s e . e —
LXA RS 3.50 (-1.25 for early out) | 6.50 6.25 6.25 6.25 6.50 5.25
M RS (R1 EVEN) 2.40 6.53 7.53 | 6.28 | 7.53 |~ 8.78 10.53
M RS (R1 00D) 2.15 6.28 7.28 | 6.03 | 7.28 |° 8.53 10.28
M SRS (Rl EVEN) 2.40 e o s — e s
M SRS (R1 0DD) 2.15 — e — — — —
ME RS (Rl EVEN) 6.25 10.5 10.25| 10.25{ 10.25| 11.5 13.28
ME RS (R1 0DD) 5.75 10.0 9.75 9.75 | 9.75 | 11.0 12.75
ME SRS (R1 EVEN) 5.75 o — i B R e
HME SRS (Rl 0DD) 5.75 e R R m— e e
MED RS 19.00 22.5 22.25) 22.25| 22.25} 24.25 25.75
MEDR RR 18.50 e —_— — e —— s
MER RR (R1 EVEN) 6.00 — o — — — e
MER RR (R1 0DD) 5.50 — o s — — —
MH RS 1.35 5.48 | 5.23 | 5.23 | 5.23 6.48 7.98
MH SRS 1.35 — — e e e e
MHI RI 1.35 e — — e e ——
MIH RS AVG. = 1.7 5.83 | 5.58 | 5.58 | 5.58 6.825 8.025
MR RR (R1 EVEN) 2.40 e e — e e —_—
MR RR (R1 00D) 2.15 s — — — — —
MSTH SI 3.0 B e e — e —
MVH RR (SRC-DEST=1) 9.5+41.75%N (-2.25 FOR DSR) S e — — — —
MVH RR (COUNT EVEN) 10.25+.875%N (-2.25 FOR DSR)| — — — — — —_—
MVH RR (COUNT 0DD) 12.0+.875% (N=1) (=2.25; DSR) | =—— — — — — —
MVH RR (COUNT NEG) 7.5 (-2.25 FOR DSR) — o e — — —
HVH RR (COUNT ZERO) 7.75 (-2.25 FOR DSR) — — — — — —
MVS RS 4.75 9.25 9.0 9.0 9.0 10.5 11.75
N RS .250 4.75 | 4.5 4.5 4.5 5.75 6.5
N SRS .250 o e — — —— —
NCT RR 1.05 + (.075 # N) — e s — —— —
NHI RI .250 — R — — — —
NIST SI 3.0 s e — — e —
NR RR .250 — o — — — —
NST RS .750 6.0 7.0 5.75 | 7.0 8.25 10.25
(o] RS .250 4.7% | 4.5 4.5 4.5 5.75 6.5
0 SRS .250 — e — — e —
-1 OHI RI .250 — — — o s —
OR RR .250 s — — — e —

17-3

INSTRUCTION EXECUTION TIME IN US

P NORMAL DOUBLE INDIRECTION AUTO AUTO
INSTRUCTION ADDRESSING XC=0 | XC=0 | XC=1 | XC=1 STORAGE INDEXING
MODES C=0)|C=1l])]C=0|C=1]| MODIFICATION

osT RS .750 6.0 7.0 5.7 | 7.0 8.25 10.25
PC RR >6.25 BUT <22.5 (NO CUR DMA) —— e —_— —_— — —_—
S RS .250 4.5 4.25 | 4.25 | 4.25 5.5 7.25
S SRS .250 — _— — — — -_—
sB SI 3.0 — —_— — — — —
SCAL RS 18.125 21.5 [24.5 |[21.25 [24.5 22.5 24
SE RS 2.50 4.75 | 4.5 4.5 4.5 4.5 9.5
SE SRS 2.50 — — — — —_— —
SED RS 6.50 10.75| 10.5 | 10.5 | 10.5 11.5 13.5
SEDR RR 6.25 — —_—] — — — —_—
SER RR 2.25 — — — -_— — —
SH RS .250 %.50 | 4.25 | 4.25 | 4.25 5.75 7.25
SH SRS .250 — — — — — —
SHH RS 1.50 4.50 | 5.50 | 4.25 | 5.50 6.75 8.50
SHW SRS 1.50 — — — —_— —_— —
SLOL SRS 1.0 + (0.25 # N); N>0 — — — — — —
SLL SRS 675 + (0.1 % N); N>1 —— — — — — —
SPM RR 5.25 . — — —_— — — —
SR RR .250 o — —_— — — e
SRA SRS 650 + (0.1 & M); N>0 — — —— — — —
SRDA SRS 1.0 # (0.25 < N); N>0 — — — —— — s
SRDL SRS 1.0 + (0.3 * N); N>0 —_— — ol — — —
SRDR SRS 2.0 + (0.5 #® N)3 N<32 — e S — e —
SROR SRS 2.0 + (0.5 # (N-32)); WN>=32 | — — — — — —
SRET RR 17.50 — o— —— — — —
SRL SRS 650 + (0.1 % N); N30 e — — — — —
SRR SRS .650 + (0.1 * N); 14>0 — — — —— — —
SSH RS 7.75 10.63 |11.63 [10.38 |11.63 | 12.875 14.625
SST RS 1.0 — — —_— — — —_—
ST RS 0.50 4.75 | 5.75 | 4.5 5.75 7.0 9.0
ST SRS 0.50 —— — — e — —
STDM RS 2.25 5.25 | 6.75 | 5.0 5.25 7.0 7.5
STE RS .500 4.75 | 4.5 4.5 4.5 4.5 7.5
STE SRS .500 — — — — — —
STED RS 1.00 5.25 | 5.0 5.0 5.0 5.0 7.5
STH RS .50 4.50 | 5.50 | 4.25 | 5.50 6.75 8.50
STH SRS .50 — — — —] — —
STH RS 7.25 16.25 |11.25 |10.0 |[l1.25 | 12.5 14.25
STXA RR 2.50 — — — —_— — —
STXA RS 2.50 6.50 | 8.0 6.25 | 8.0 8.25 8.75
suM RR 2.5 % (8 ELEMENTS TESTED) — — — — — —_—
sveC RS 20.25 22.75 |23.75 |22.5 |[23.75 | 25.0 26.75
h1:] SsI 2.0 — — — —_— — —
T0 RS 3.0 5.75 | 5.50 | 5.50 | 5.50 | 6.75 8.25
T SRS 3.0 — — — — — —_—
TH RS 1.75 5.25 | 5.0 5.0 5.0 6.25 7.75
TH SRS 1.75 e —— — o — —
TRB RI 1.0 — — — — —_— -_—
TS RS 3.75 6.50 | 6.25 | 6.25 | 6.25 7.50 9.0
TsB SI 3.0 — -_— — — — -_—
X RS .250 4,75 | 4.50 | 4.50 | 4.50 5.75 7.50
X SRS .250 — — — — — —
XHI ‘RI1 .250 — — — — — —
XIST SI 3.0 — — — — -_— -
xR RR .250 — — — — —_— —_
XST RS .750 6.0 7.0 5.7 | 7.0 8.25 10.25
XuL RR 1.0 — — — — — -_
ZB SI 3.25 — — — — —_— —_—
ZH RS 1.50 4.50 | 5.50 | 4.25 | 5.50 6.75 8.50
ZH SRS 1.50 — — _— —_— —_— -
ZRB RI .250 — — -_— — — -

17-4

Appendix |

Input/Output Processor (IOP) —
Principles of Operation for
Program-Controlled Inputs & Outputs

PCI/PCO POO

TABLE OF CONTENTS

Title Page
PCI/PCO COMMAND WORD FORMAT-—---——e———o—o 2

PCO COMMAND WORD FORMAT SUMMARY-----=—-oooeeo_.__________ "~ 4

PCO FORMATS

DMA BURST——--ommmom e __ e 6

FORCE OCTAL MIA BAD PARITY-----——-ee—e 777 7

FORCE DMA ADDRESS/DATA BAD PARITY-----=-----o——ooe__________ 7A
FORCE QUEUE CONTROL BAD PARITY-=—--=-o——o—ee—o 7B
FORCE IOP H-BUS BAD PARITY--—---—-e—eeeeo 77777 7C
DATA FLOW PARITY CHECK--=-------e—eeo 7777 7D
MIA TRANSMITTER--—-=--—-oem—m— 7T 9

MIA RECEIVER - oo T 11

DISCRETE OUTPUT=-—c-—-eeeeee o 77T 13

CONFIGURE PROCESSORS-=-==--ooooee—ee 777777 16

MASTER RESET-—-—-ooeoeeee o TTTT 18

LOAD GO/NO GO TIMER-=-===-ooomeee— 7777777 20

LOAD GO/NO GO TIMER TEST=-—-—--—-—eeeo " 77777 21

CONFIGURE TERMINATION CONTROL LATCHES--—-—---—-o—o———_________ 22

LOAD TEST REGISTER-—-—-=--m--moee—ee 7777 23

INTERRUPTS oo T 24

RESET STATUS 1 (GO/NO GO)==---m=o-mmemmomo 7777 25

LOAD MSC BUSY---ooooo oo o TTTT 26

LOAD LOCAL STORE-—-—-—-oome—eee 77T 27

TEST DMA 8 MICRO SECOND TIMER-=-==-———————e—o_________________ 29

PCI FORMATS

READ MIA TRANSMITTER STATUS--—--—==-—-o—o—eeo 30

READ MIA RECEIVER STATUS—==-----——e—eo—_ 7777 31

READ DISCRETE OUTPUT STATUS—-———=—=mmomeeeee "~ 32

READ PROCESSOR HALT STATUS—-----—=ooeeeee_______ 7777 33

READ INTERRUPT REGISTER A/GROUP l-=—-m-oe——eeee____________ "~ 34

READ INTERRUPT REGISTER B/GROUP 2---m-———-om—e________________ 36

READ INTERRUPT REGISTER C/GROUP 3--—--m—o——e—e o ______________ 38

READ INTERRUPT REGISTER D/GROUP 4----—-—-o——e_________________ 39

READ INTERRUPT REGISTER E/GROUP 5—----o———e—ee_______________ 40

READ RM STATUS REGISTER-=——-——--——om—oo TTTTTm oo 41

READ DISCRETE INPUT A=--c———ee—eeeee 77 45

READ DISCRETE INPUTS (33-40)-—-—---—-oeeemeeo 77 49

READ STATUS 1 (GO/NO GO)===mmmeoomeeee 7~ 50

READ STATUS 4 (BUSY/WAIT)=====-m-oommeme " 51

READ LOCAL STORE===--—-—-oo—eem e T 52

I-iii

PCI/PCO PRINCIPLES OF OPERATION

This document identifies the specific Program Controlled Input

and Output commands available to the Space Shuttle AP-101S computer
user.

PCI/PCO COMMAND WORD FORMAT

0

1

56 7 1617 31

BIT O0; COMMAND ID FIELD

= Program Controlled Output (CPU Output)
0 = Program Controlled Input (CPU Input)

BITS 1 Through 5; Subsystem SELECT FIELD

BIT

BIT

00O0O01S= Control/Monitor (CHM)
00010 = Redundancy Management (RM)
00100 = Data Flow (DF)

01000 = Local sStore (LS)

100 00 = Channel Control (CC)

6; HANDSHAKE CONTROL FIELD

0
1

No handshake required
Handshake required

7 through 16; DATA SELECT FIELD

(See Separate section)

BITS 17 through 31; IGNORED.

NOTES :

1.

I1-2

The five-bit Subsystem Select Field must contain only the bit
specified in the format description for the desired subsystem
selected. Additional bits will cause the PCI/PCO data word to be
written to all the subsystems designated with associated loss of
IOP control. No attempts to use the hardware configuration should
be made since driving circuits are not sized to drive multiple
loads and will not operate reliably.

Handshaking for a PCI/PCO is required for several operations to
allow the subsystem selected to complete an operation before the
PCI/PCO command function is implemented. The added operation is
accomplished by the IOP and requires no special programming of the
CPU. The handshaking operation prevents loss of control of the
IOP software because of possible configuration changes during the
PCI/PCO implementation.

PCO COMMAND WORD FORMAT SUMMARY

OCTAL HEX
301010 00000 cl04
300100 00000 co004
301400 00000 Cc180
301200 00000 C140
301020 00000 clo8
301004 00000 clo2
300002 00000 c001
301002 00000 Ccl01
205010 00000 8504
204010 00000 8404
205020 00000 8508
204020 00000 8408
205040 00000 8510
204040 00000 8410
206100 00000 8620
207100 00000 8720
204200 00000 8440
210010 00000 8804
210011 00000 8804
210020 00000 8808
210040 00000 8810
210050 00000 8814
210060 00000 8818
222000 00000 9200
222010 00000 9204
(SEE WITHIN)

301001 00000 Ccl100

1-4

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8000
0000
0000
0000
0000
0000
0000

8000

DMA BURST ENABLE

DMA BURST INHIBIT

FORCE OCTAL MIA BAD PARITY
FORCE DMA ADD/DATA BAD PARITY
FORCE QUEUE CONTROL BAD PARITY
FORCE IOP H-BUS BAD PARITY '
DISABLE PARITY CHECK

ENABLE PARITY CHECK

MIA XMTR ENABLE

MIA XMTR DISABLE

MIA RCVR ENABLE

MIA RCVR DISABLE

DISCRETE OUTPUT SET

DISCRETE OUTPUT RESET
PROCESSOR HALT

PROCESSOR ENABLE

MASTER RESET

LOAD GO/NO-GO TIMER

TEST GO/NO-GO TIMER

TERM. LATCH CONTROL

LOAD TEST REGISTER

ENABLE INTERRUPTS

TEST ALL INTERRUPTS

RESET STATUS 1(GO/NO-GO)

LOAD MSC BUSY '

LOAD LOCAL STORE

TEST DMA TIMER

PCI COMMAND

OCTAL HEX
004000 00000 0400
004010 o0o0O0O0O0 0404
004020 00000 0408
004030 00000 040cC
010000 00000 0800
010010 00000 0804
010020 00000 0808
010030 00000 080C
010040 00000 0810
010050 00000 0814
010060 00000 0818
010070 00000 081cC
020000 00000 1000
020010 00000 1004

(SEE WITHIN)

WORD FORMAT SUMMARY

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

MIA XMTR STATUS

MIA RCVR STATUS .
OUTPUT STATUS

READ DISC.

PROCESSOR
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
RM STATUS

D.I.A. (1-
D.I.B. (33-40)

HALT STATUS
REG.
REG.
REG.
REG.
REG.
REG.

32)

moQw»

READ STATUS 1 (GO/NO-GO)

READ STATUS 4 (B/W)

READ LOCAL STORE

PCO FORMATS

DMA BURST
COMMAND WOPRD
FUNCTION OCTAL _ HEX : DEVICE
DMA BURST INHIBIT 30001000000 C0040000 cc
| ENABLE 30101000000 C1040000
INEIBIT
NOT GSED
11110101040§010J0J04040]0J14010J0) ¢ ¢ 1 & & & b L L 4 1 1 1]
0 1 56 7 1617 31
ENAELE
NOT USED
11110104010J0§1104040404041404090) | ¢ | ¢ 4 L Lt 4 | 1 |1
0 1 56 7 1617 31
DATR WORD
BITS
0 NOT USED. THESE PCO REQUIRE NO DATA WORD.
1 .
21 :

These command words provide control of the Direct Memory
Access capability to CPU main memory. When inhibited, the TIOP will
not access memory using Burst Mode. The commands are provided to
allow CPU control of memory operatioms.

'1-6

PCO FORMATS

FORCE OCTAL MIA BAD PARITY

COMMAND WORD

FUNCTION OCTAL

HEX DEVICE
FORCE BAD PARITY TO 30140000000 C1800000 cc
OCTAL MIA PAGES
ENABLE
NOT USED
bl A M e S U U NN
01 5 6 7 16 17 '
DATA WORD
BITS
0

NOT USED. THIS PCO REQUIRES NO DATA WORD.
31

This command forces bad parity on all data transmitted from the

IOP to the OCTAL MIA pages. The MIA page checks parity on all incoming
command and data words.

This command can be reset by either Power on Reset,

System Reset,
or by issuing the PCO command "Disable Flow Parity Check".

PCO FORMATS

FORCE DMA ADDRESS/DATA BAD PARITY

COMMAND WORD .

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30120000000 C1400000 cC
DMA ADD./DATA :

ENABLE

NOT USED
Ooqoqo o e oo gy (L L]

01 567 16 17 ’

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

This command allows the operator to force bad parity on the DMA
address or data bits individually, in order to check out each of the two
parity checkers. To force bad parity on the DMA address only, a data
word containing an odd number of 1's must be writtem to an odd parity
address location with the above PCO active. To force bad parity on the
DMA data only, a data word containing an even number of 1's must be
written to an even parity address location with the above PCO active.

This command can be reset by either Power on Reset, System Reset,
or by issuing the RCO command "Disable Flow Parity Check". ‘

PCO FORMATS

FORCE QUEUE CONTROL BAD PARITY

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30102000000 €1080000 ccC
THE QUEUE CONTROL BITS

ENABLE

NOT USED
SO o oo e OO OO L L)

01 567 16 17

DATA WORD

BITS

0 NOT USED. THIS PCO REQUIRES NO DATA WORD.
31

This command forces bad parity on the local store address and
queue control bits.

This command can be reset by either Power on Reset, System Reset,
or by issuing the PCO command "Disable Flow Parity Check".

PCO FORMATS

FORCE IOP H-BUS BAD PARITY

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30100400000 €c1020000 cc
IOP H-BUS RECEIVED DATA

ENABLE

SELoreeofopropee oo ool | f L]

01 56 7 16 17

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

This command forces bad parity on all data coming to the IOP via
the H-Bus (PCO’s or DMA’'s).

This command can be reset by either Power on Reset, System Reset,
or by issuing the PCO command "Disable Flow Parity Check".

1-7C

PCO FORMATS

DATA FLOW PARITY CHECK

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
ENABLE FLOW PARITY CHECK 30100200000 C1010000 cc
DISABLE FLOW PARITY CHECK 30000200000 c0010000 CcC
ENABLE
NOT.USED
Loeeejojtojojojojojojo ol |y | [
01 567 16 17
DISABLE
NOT USED
LIH[Oe[efofole o 0f0 o000 0l f { [[]| |]] [1]]
01 567 16 17 ;
DATA WORD
BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.
31

The Enable Flow Parity Check PCO command is necessary to start
the parity checking in the data flow following any event that disables
parity checking. Events that disable parity checking include Power On,
System Reset, and Disable Flow Parity Check PCO command. IOP Master
Reset does not alter the state of the parity checkers.

The Disable Flow Parity Check PCO command disables the parity
checkers. It also resets any parity generator which is forcing bad
parity in response to one of the "force bad parity" PCOs.

Parity is generated in four locations in the IOP in order to
detect single bit errors. Each of the four generators has 1its
corresponding checker. In some cases because of the IOP bus structure,
a single checker will check two different data paths. All generators
and checkers work on odd parity and can be enabled and disabled under
PCO control. All four checkers can be individually checked with the PCO
commands to force bad parity. If a parity error does occur in the I0P,
an external 1 interrupt is issued to the CPU and all BCE's and the MSC
are halted, all transmitter and receiver enables are disabled and the
discrete outputs are reset. The cause of this interrupt can be
determined by reading the IOP interrupt register B.

All incoming H-BUS transfers from the CPU such as DMA's and PCI/O0's
have odd parity generated once it is received by the IOP. This data is
then checked in two locations. The SI page checks the data for correct
parity directly off the 'DEV OUT DATA BUS' and the IB page indirectly
checks the H-BUS parity when it checks parity for registers R1, R2, R3.

Parity is generated for registers R4, R5, R6 which allows parity to
be checked on all DMA address and data words before being driven to the
CPU. R4, R5, R6 parity is also checked indirectly by the IB page when
it checks parity for registers RI, R2, R3.

On the 1IB page parity is generated for all data and command words
being sent to the octal MIA. Parity for this bus is then checked on the
MIA’s which sends an error message back to the IOP if any errors are
detected.

The Local Store address lines along with the Queue control bits also
have parity associated with them. This is both generated and checked on
the MC page. The data flow parity checkers, and bad parity generators
can be reset by either issuing the PCO command "Disable Flow Parity
Check" or by Power on Reset.

Data flow parity checking must be enabled for the self test processor
to set an external 1 interrupt if it detects an error. If parity 1is
disabled no error indication is made and the self test processor
continues,

IOP Local Store requires initialization before parity can be turned
on. This is done on power on initialization, or after an IPL. Once a
parity error occurs, R2 bit 0 is forced (as with an interface parity
error in the AP101B), the MSC and BCEs are halted, all transmitters and
receivers are disabled, and the discrete outputs are reset. These are
the mechanisms used to inhibit further transmissions on any BCE. Any
parity error causes an External 1 (level B) interrupt 'to the CPU,.

To resume MSC and BCE operation one of the following must occur:

1) Cycle power on the unit.
2) IPL the unit.

NOTE: For testing purposes it is possible to force errors and resume 1if
local store locations with bad parity are corrected and a Master Reset
PCO is issued to reset the IOP.

1-8°

COMMAND WORD

PCO FORMAT

MIA TRANSMITTER

1

FUNCTION OCTAL HEX DEVICE
MIA TRANSMITTER DISABLE 20401000000 84040000 C/M
ENABLE 20501000000 85040000
DISEBLE
NOT USED
1010101041]010410404040410111040400 ¢ & | | | | I I T T O
01 56 7 1617 ' 3
ENABLE
| NOT USED
1§010104011j0J11040410401011104040¢ | | | | I O O O O
DATA WORD
0 = No change of condition. Hardware does not respond.

Enable individual MIA transmitter if command word was

enable.

Disable individual MIA transmitter if command word was

disable.

provide
used as

These words are to control individual MIA transmitters to

IOP output control of system data buses. The
a mask fcr configuring MIA transmitters.

BIT .

0
1

24
25

31

NOT USED.
CHANNEL NO. 1 MIA TRANSMITTER

°

CHANNEL NO. 24 MIA TRANSMITTER

NOT USED

data

word

is

COMMAND WORD

PCO FORMAT

MIA RECEIVER

FUNCTION OCTAL , HEX DEVICE
MIA RECEIVER DISABLE 20402000000 84080000 C/M
ENABLE 20502000000 85080000
DISABLE
y
NOT USED
110101010114040101040104110401010} § 1 & 1 0 4 L L 1 & {1
01 56 7 1617 31
ENABLE
NOT USED
11010101011j0f11040101001110104010f 4 1 0 0t 0 L 1 | 1 | 1

DATR WORD

s}
[
-3

We o NDNNe o N2 O
New

—d

1 =

1 =

NOT USED. BIT IGNORED
CHANNEL NO. 1 MIA RECEIVER
CHANNEL NO. 2 MIA RECEIVER

No.23
No. 24
NOT PRESENTLY USED. BITS IGNORED

No Change of status

Enable receiver if with enable command word*

Disable receiver if with disable command word

*Should only be used when the associated BCE is in the Halt State.

These command and data words provide
condition of the MIA receivers for purposes of
data input. The data word is used as a mask
control.

12

capability to control
channel <control and
for MIA configuration

PCO FORMAT

DISCRETE OUTPUT

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
DISCRETE OUTPUT RESET 20404000000 84100000 C/M
SET 20504000000 85100000
RESET
. NCT USED
1101010101100 0101OF1IOI0I040O1IO0O% ¢+ ¢+ L L 1 11 11 1 Ll
0 1 56 / 1617 3
SET
NOT USED
1{010101011J0L1101010411010101010{ | { | | | O I I I I |
DATA WORD
* = Hardwired to IOP internal circuitry. These DO's aTe not
available for scftware use.
0 = No change
1 = Set discrete bit if command word is set.
1 = Reset discrete tit if command word is reset.

The data word is used as a mask to control the discrete outputs.
The discrete outputs are configured as differential
drivers. The pin connections to the IOP are indicated
for the true (T) and complement (C) outputs.

BIT

0 (D0-0) T J3-51 SPARE
o J3-63

1 (DO-1) T J3-18 SPARE
o J3-29

2 (D0-2) T J3-28 SPARE
o J3-40

3 (D0-3) T J3-30 SPARE

c J3-19
u (D0-4) ™ J3-41 SPARE
o J3-52
5 (D0-5) T J3-59 SPARE
(o J3-60
6 (D0-6) T J3-49 SPARE
o J3-50 ‘
vi (D0-7) T J3-36 I/0 ACTIVE TALKBACK
o J3-u48
8 (D0-8) T J3-62 SPARE
c J3-61
9 (D0-9) T J3=-25 GPC READY TALKBACK
. c J3-37)
10 (D0-10) T J3-15 SPARE
c J3-26
11 (D0-11) T J3-38 SPARE
C J3-36
12 (D0-12) T J3-8 MM1 RESET
C J3-16
13 (D0=-13) T J3-17 MM2 RESET
o J3-27
14 (D0-14) T J3-1 SPARE
o J3-2
18 (D0-15) T J3-3 SPARE
o J3-9
16 (D0-16) T J3-4 SPARE
c J3-10
17 (D0-17) T J3-11 SPARE
o J3-5
$18 (D0-18) T J3-12 SPARE
c J3-6
19 (D0-19) T J3-7 SPARE
c J3-13
#20 (D0-20) T J3-44 GPC SELF SYNC 1
c J3-u43 :
21 (D0-21) T J3-22 SPARE
c J3-14
$#22 (D0-22) T J3-45 BFS RUN
o J3-33
23 (D0-23) T J3-24 SPARE
c J3-23
$24 (D0-24) T J3-34 GPC SELF SYNC 2
o J3-35
25 (D0-25) T J3-56 SPARE
C J3-55
$#26 (D0-26) T J3-21 SPARE
o J3-32
27 (D0-27) T J3-20 SPARE
o J3-31
#28 (D0-28) T J3-46 GPC SELF SYNC 3
c J3-47
29 (D0-29) T J3-42 SPARE
C J3-53

*30 GPC ID (D0-30) T J3-58
C J3-57

This bit is hardwired to a positive output source and
will provide a source voltage for GPC identification
in the systen.

*31 IPL (D0-31) T J3-68
C J3-67

This bit when set (1) indicates that the IPL routine
is in progress. When reset (0), the bit indicates +hat the

IPL routine has not been requested or that it is complete
depending upon the time/event sequence.

* See I-13

- # High Speed Discretes

PCO FORMAT

CONFIGURE PROCESSORS

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
CONFIGURE HALT 20€10000000 86200000 C/M
PROCESSORS
ENABLE 20710000000 87200000
HALT
NOT USED
110101010711§1101010414010104040404 ¢+ 1 0 L 0 v 4 L L b 1 111
0 1 56 7 1617 . 31
ENABLE

{ | , NOT USED
(01010100 1f 1| 110104 1401010401040 ¢ ¢ 1 & ¢ U L U L v b 11|

DATA WORD

These PCO's provide capability to force irdividual MSC and BCE
to the halt or operate states under GPC control. The data word is used
2s a mask to control the appropriate BCE/MSC processor.

0 = No change

1 = HALT if accompanied by the HALT command word.
1 = ENABLE if accompanied by the ENABLE command word.
BIT

0 MSC

1 BCE NO. 1

2 2

23 23

24 : 24

25 SELF TEST

26 NOT USED. BITS IGNORED

31 .

The 25th BCE processor also called the self-test processor, 1is not
associated with an I/0 system bus. This processor executes diagnostic
microcode that can detect certain faults in the IOP. One major purpose
of the diagnostic microcode is to verify data flow paths in areas of the
IOP where parity is not present. Another is to test basic microcode
operations that normally occur during execution of the BCE #MOUT instruc-
tion.

Unlike the other BCE processors, the self-test processor can be in
only one of two states, halt or enable. The halt state is entered after
any system reset, or after a 'processor halt' PCO with the self-test bit
of the data word set. In this state the error detection capabilities of
the self-test processor are disabled and the processor 1s reset to a
known condition. Exit from the halt state to the enable state can only
be accomplished by a 'processor enable' PCO with the self-test bit of
the data word set. In this state the error detection capabilities of
the self-test processor are enabled. The current state of the self-test
processor can be determined by the state of the self-test bit in the
stat5 (halt/enable) register. This register can be read with a 'read
processor halt status' PCI. Since there are only two states for the
self-test processor, the stat4 (busy/wait) register has no meaning for
processor 25 and the MSC has no control over processor 25's state.

If the self-test processor detects an error, and the Data Flow
Parity Checking is enabled, an external 1 interrupt is sent to the CPU,
the MSC and all BCEs are halted, all transmitters and receivers are
disabled, and the discrete outputs are reset. The cause of this inter-
rupt can be determined by reading IOP interrupt register B. Both the
self-test bit of the statl (GO/NOGO) register, and processor 25's status
register have no meaning for the self-test processor.

The diagnostic microcode uses 5 full word memory locations during
execution. Location A4 is used to verify that the IOP can properly
store data into the main memory. Therefore this location must not be
store protected. Before the self-test can be enabled, locations A6-AC
must be initialized to the full word constants shown in the table

below:
Memory Locations Used by the Self-Test Processor

ADDRESS DATA
0oooa4 XXXXXXXX *This location must not be store
protected
000Aa6 ‘ 33333333
000A8 OFOFOFOF
000AaA OOFFOOFF
000AC O0OO0O0OFFFF

Data from the five memory locations will be continuously fetched
from memory by the diagnostic microcode while the self-test processor is
enabled. Therefore these memory locations must not be altered.

Note: Diagnostic processor 25 should not be enabled while the macro
instruction "MSC self-test" is executing. MSC self-test modifies Proc
25's locations in Local Store which results in IOP diagnostic errors.

I-17

PCO FORMAT
MASTER RESET
COMMAND WORD
FUNCTION QCTAL HEX DEVICE
MASTER RESET 20420000000 84400000 c/H
NOT USED
1101010101140§010114010404040CI0404 & t ¥ 1 4 4 1 1 4 & | | | |
0 1 56 7 1617 31
DATA WORD

There is no data word associated with this command word.
following table indicates the hardware reset by this command word

the resulting condition.

REGISTER
STAT1 (GO/NOGO)
STATY (BUSY/WAIT)

STATS (HALT/NO HALT)

XMIT ENABLE

RCVR ENABLE

CHANNEL

FATIL VOTE

TERMINATE CONTROL LATCHES
VOTER TEST

FAIL LATCH

TIME OUT LATCH

DISCRETE OUTPUTS

MASTER RESET

FUNCTION

RST=GO
RST-WAIT

RST=HALT
MSC/BCE

RST=DISABLE
RST-DISABLE

NC CHANGE

RST=NO FAIL

RST=NO TERMINATION
RST=OPERATIONAL DATA
NG CHANGE

NO CHANGE

RST=INACTIVE

The
and

INTERRUPT
-C/M IDLE

-TOP FAIL LTCH
-TIME OUT LTCH
-ROS PAR

-I0P FAULT

-ALL OTHER INTERRUPTS

WATCHDOG TIMER

SET

NO CHANGE
NO CHANGE
RESET
RESET
RESET

RST=ZERO COUNTER AND
INHIBIT COUNTING

19

PCO FORMAT

LOAD GO/NO-GO TINMER

COMMAND WORD

FUNCTION OCTAL HEX ‘ DEVICE
LCAD GO/NO-GO TIMER 21001000000 88040000 RM
NCT USED

1§010101110§0§0104010104011401010{ 1 | 1 | | | I T T Y O
01 S 6 7 1617 37

DATA WORD

NOT USED. BITS IF SET ARE IGNORED.

° e

20 GO/NO=-GO TIMER

tis
[]
=]
=
w0
[s:)

N
($;]
20 VONOATNEWN=O

w
(e}
- wd

LSB = 0.7%8 msec.

Data word wused to 1load the Go/NO-GO timer in normal Ssystem
operation. The timer scaling permits 3.145728 seconds maximum to
timeout. Timeout sets a timeout latch which is used to drive the
Computer Fail output. Once the timer has been reset, the counter will
not operate until loaded via this PCO.

The timer is a countup device. The data loaded must be the twos
complement of the desired time. The leading bit positions are ignored
and may be set as a result of the complement operation if desired. A
data word of all zeros causes an interrupt after a full count (3.145728
sec). This PCO also resets the timeout latch.

PCO FORMAT

LOAD GC/NO-GO TIMER TEST

COMMAND WORD

FUNCTION OCTAL EEX . DEVICE
LCAD GO/NO-GO TIMER TEST 21001100000 88048000 - R
l _ NOT USED
11040101110§0f0404010J040F1OI0L L 1 1 L 0 & L Lt 4 {11
0 1 5§ 7 1617 31
DATA WORD
BIT

0 NOT USED. BITS IGNORED

20 GO/NO-GO TIMER BIT MSB

0
1
2
3
[}
5
26 6
7
8
9
0
1 LSB = 0.768 msec.

This PCO 1is used to load the Go/No-Go Timer with any chosen
value which is incremented by one low order bit and read with a ©PCI
(READ STATUS REGISTER) to determine the operating status of the timer.

The Terminate Output driver is permanently inhibited by the
hardware. "

The Terminate Output 1latch is reset after the time out
interrupt has been generated.

The timer is a countup device. The desired code 1loaded in the
data word must be the twos complement of the desired timeout value. A
data word of all zeros causes an interrupt after a full count. This PCO

also resets the timeout latch.

I-21

|

PCO FORMAT

CONFIGURE TERMINATION CONTROL LATCHES

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
CONFIGURE TERMINATION 21002000000 88080000 RE

CONTROL LATCHES

NOT USED _I
1]010101110§0J01010404011101041000} ¢ 1 1 1 0 L 1 1 1 1 1 ¢t | |
0 1 56 7 1617 31
DATA WORD
BIT
0 NOT USED. BITS IGNORED

30 TIMEOUT TERMINATION LATCH

31 . VOTER TERMINATION CONTROL LATCH
0 = Reset
1 = Set

These two bits permit control of the associated RM latches by
CPU software (PCO) for purposes of testing and to force error
indications (Computer Fail and IOP Transmission Termination) for CPU
detected faults. The error indications may be inhibited for self
testing. ‘

PCO FORMAT

e LOAD TEST REGISTER

COMMAND WORD

FUNCTION _OCTAL HEX DEVICE
LOAD TEST REGISTER 21004000000 88100000 RY
NOT USED
11010101110§0101040404110101010404 ¢ ¢ ¢+ L 1 & & L 4 ¢+ 1 1 11
0 1 56 7 1617 3
DATA WORD
BIT

NOT USED. BITS IGNORED

-

L T I

- 2€ .
(27 VOTER TEST CONTROL
. 0 = Permit normal operation
1 = Inhibit normal inputs (perform test)
This bit 1inhibits the normal voter inputs (when set)
from the other IOP's and inhibits driving of the
Computer Fail 1latch and IOP Transmissions Termination
logic. This is used to test the RM voter logic.
28 VOTER TEST INPUT 1
29 2
30 3
31 u
0 = Not failed test input
1 = Pailed test input

These bits are used to load a register to provide test inputs
to the voter logic for test purposes. Bit 27 (above) must be set to
prevent erroneous system failure indicatioms.

- The IOP Voter test hardware will respond to these test inputs
(Bits 28-31) or to the normal operational inputs. The Test Inputs and
Cperational Inputs are logically OR'ed. ‘

P W

PCO FORMAT

INTERRUPTS
COMMAND WORD
FONCTION OCTAL HEX DEVICE
TEST INTERRUPTS 21006000000 88180000 RN
ENABLE INTERRUPTS 21005000000 88140000 RM
ENABLE
NOT USED
1{010101110J0j0101010f140¢01104040} ¢ ¢+ 1 ¢+ 1 1 ¢ ¢t bt 1t1
T 56 7 i 31
TEST
NGT USED
110101011104 ofjo(ofo0(0p1gtqo0101010f L vt ettt
1 S 6 7 17 31
DATA WORD
BIT
0
. NOT USED. THESE PCO REQUIRE NO DATA WORD.
31
The TEST command word forces interrupt Registers A, B, D,
and E to set all interrupts as follows:
REG A BITS 0-5 (FC00O 0000)
REG B BITS 4&5 - (0C00 0000)
REG D BIT O (8000 0000)
REG E BIT O (8000 0000)
The interrupts will stay set until the action described

below is taken. This permits self-testing of the interrupt detection
circuitry. The interrupt registers will not be reset by reading of

the registers

The

as in normal operation.

ENABLE command must be issued after the TEST command

word to remove the test interrupt. After issuing this PCO, each of
the four registers must be read to reset them and to permit normal

operation.

Note: Test and Enable do not force the new parity interrupts.

PCO FORMAT

RESET STATUS 1 (GO/NO-GO)

CCHMMAND WORD

FONCTION OCTAL HEX DEVICE
RESET STATUS1(GO/NO-GO) 22200000000 92000000 DF
NOT USED
11010711070f1]0104010404010104040f & ¢ ¢ L 4 L 4 Lt 1 1 {11
0 1 5 6 7 1817 3
DATA WORD

These PCO's provide the capability (data Word is used as
Mask) to reset Status Register 1 to the normal or GO indicator. The
entire word must be configured for each application.

0 = ﬁo Change

1 = Reset Status
BIT

0 MSC

1 BCE NO. 1

2 2

23 23
24 24
25 NOT USED BITS IGNORED
26 N

31 .

I

|

25

PCO FORMAT

LOAD MSC BUSY

COMMAND WORD

FOUNCTION OCTAL HEX DEVICE
LOAD MSC BUSY 22201000000 92040000 DF
|
NOT USED
1101011101041f0101040403 0114010104 & ¢+ 4 & ¢+ & & 4+ 4 1 01 11
01 56 7 1617 3"

DATA WORD
No data word required.
This PCO command word forces a BUSY condition to the MSC. It

is required to start the micro-processing of MSC/BCE operations after
system power-up and initialization.

I-26

PCO FORMAT

LOAD LOCAL STORE

COMMAND WORD

FONCTION OCTAL HEX DEVICE
LOCAL STORE LS
VARIES. SEE BELOW NOT USED
1101110109044 ¢ ¢ 4 1 1 4 1 11 LI A N T O I A O
0 1 56 7 1617 31

The 10(10) bits (7 through 16) associated with the device
select field for this command word varies depending upon the word
(location) loaded in Local Store. The command word provides access to
the 1local Store area associated with +the MSC functions, 24 BCE
functions, and Self-Testing of the IOP. The specific data stored in
each 1location is discussed in the MSC and BCE Principals of Operation
documents and involve that data required for initializing and
operating the MSC and BCE's. :

Bits 7 through 11

This 5-bit field is used tc designats the MSC or BCE to which
the data word must be transferred as shown below:

BITS 7 8 9 10 11
0 0 0 0 0 MSC REGION
0 0 0 0 1 BCE NO. 1 REGION
0 0 0 1 0 BCE NO. 2 REGION
1 1 0 0 0 BCE NO. 24 REGION
1 1 0 0 1 SELF TEST

BRi+ts 12 and 13

This 2-bit field 4identifies the bank (A, B, or C) in Local
Store for the above defined MSC or BCE area to which +the data word
must be transferred as indicated below.

BITS 12 13

0 0
0 1
1 0

Bits 14,15 and 16

is completed.

This 3-bit field is
loaded. The resolutior to
Banks A and B

four words required.

BITS 1415 16
0 0 0
0 0 1
1 1 1
DATA WORD

word

I-28

BANK A

BANK B

BANK C

used tc identify which word in a Bank

is

a single word is achieved when this field

use only Bits 15 and 16

LOCATICN O

LOCATION 1

LOCATION 7

to control

The single data word for this ccmmand must contain the
(18 (10) bits) scaled to the LSB portion of the 32-bit data word

as indicated belcw.

PCO DATA
WORD BIT

0
1

13
14
15

31

LOCAL STORAGE
RORD BIT

NOT USED

-d ® 0 2 O°® e o

MSB

LSB<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>